

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

APPLICATION OF REAL OPTIONS THEORY TO
SOFTWARE ENGINEERING FOR STRATEGIC DECISION

MAKING IN SOFTWARE RELATED CAPITAL
INVESTMENTS

by

Albert O. Olagbemiro

December 2008

 Dissertation Co-Supervisors: Man-Tak Shing
 Johnathan Mun

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Application of Real Options Theory to Software
Engineering for Strategic Decision Making in Software Related Capital Investments

6. AUTHOR(S) Albert O. Olagbemiro

5. FUNDING NUMBERS
Project #:F08-023, JON: RGB58

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Acquisition Research Program OUSD 08
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, CA 93943

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
As it stands today, software is the major expense in software-intensive weapons systems. Therefore software is, and should be
treated as a capital investment and an approach emphasizing a strategic investment methodology in its acquisition is necessary.
The strategic flexibility in software engineering decisions can be valued as a portfolio of options or real assets, much akin to
options on financial securities which have real economic value under uncertainty. This approach would emphasize the linking
of program management decisions to current and future unknown situations within the stipulated parameters of cost, schedule
and functionality thus giving the managers a set of choices or options. This dissertation describes a strategic decision-making
process that is based on the general concepts of initiating the software acquisition process with a situation assessments phase,
identifying un-resolvable high-level uncertainties, generating the appropriate strategic actions and deriving the benefits or
value created either explicitly or in the form of Real Options. We present a framework based on Real Options theory to allow
decision makers to better balance customer requirements as dictated by operational needs within financial viability and
schedule constraints through the identification, valuation and optimization of strategic decision pathways created in the form of
Real Options. We apply the framework to the software component (Future Combat Systems Network) of the U.S. Army Future
Combat System (FCS). Our study found that when properly formulated, a Real Options approach could be used as an effective
risk management tool to guide decision-making at the software acquisition level further complementing the risk-driven spiral
development approach currently being utilized in the U.S. Department of Defense (DoD) evolutionary acquisition model.

15. NUMBER OF
PAGES

199

14. SUBJECT TERMS
Real Options, Strategic Investments, Software Acquisitions, Risk Management, Software Engineering

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

APPLICATION OF REAL OPTIONS THEORY TO SOFTWARE
ENGINEERING FOR STRATEGIC DECISION MAKING IN SOFTWARE

RELATED CAPITAL INVESTMENTS

Albert O. Olagbemiro
Captain, United States Air Force (Reserve)

B.S., University of Maryland Baltimore County, 1998
M.S., Johns Hopkins University, 2000

M.B.A., Johns Hopkins University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 2008

Author: __
Albert O. Olagbemiro

Approved by:

______________________ _______________________
Man-Tak Shing, Associate Professor Johnathan Mun, Research Professor
of Computer Science, Dissertation of Information Sciences
Co-Supervisor and Committee Chairman Dissertation Co-Supervisor

______________________ _______________________
Mikhail Auguston Tarek Abdel- Hamid
Associate Professor of Computer Science Professor of Information Sciences

Bret Michael, Professor of Computer
Science and Electrical and Computer Engineering

Approved by: ___

Peter Denning, Chair, Department of Computer Science

Approved by: ___

Douglas Moses, Associate Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As it stands today, software is the major expense in software-intensive weapons

systems. Therefore software is, and should be treated as a capital investment and an

approach emphasizing a strategic investment methodology in its acquisition is necessary.

The strategic flexibility in software engineering decisions can be valued as a portfolio of

options or real assets, much akin to options on financial securities which have real

economic value under uncertainty. This approach would emphasize the linking of

program management decisions to current and future unknown situations within the

stipulated parameters of cost, schedule and functionality thus giving the managers a set of

choices or options.

This dissertation describes a strategic decision-making process that is based on

the general concepts of initiating the software acquisition process with a situation

assessments phase, identifying un-resolvable high-level uncertainties, generating the

appropriate strategic actions and deriving the benefits or value created either explicitly or

in the form of Real Options. We present a framework based on Real Options theory to

allow decision makers to better balance customer requirements as dictated by operational

needs within financial viability and schedule constraints through the identification,

valuation and optimization of strategic decision pathways created in the form of Real

Options.

We apply the framework to the software component (Future Combat Systems

Network) of U.S. Army Future Combat System (FCS). Our study found that when

properly formulated, a Real Options approach could be used as an effective risk

management tool to guide decision-making at the software acquisition level further

complementing the risk-driven spiral development approach currently being utilized in

the U.S. Department of Defense (DoD) evolutionary acquisition model.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. STATEMENT OF THE PROBLEM ...2
C. RESEARCH OBJECTIVES...4
D. HYPOTHESIS..6
E. RESEARCH METHODOLOGY ...6
F. SIGNIFICANCE AND POTENTIAL IMPACT...8
G. SUMMARY OF MAJOR CONTRIBUTIONS...9
H. LIMITATIONS..10
I. ASSUMPTIONS...11
J. DISSERTATION ORGANIZATION ..12

II. ASSESSMENT OF PREVIOUS WORK...15
A. SOFTWARE INVESTMENTS BACKGROUND15
B. INVESTMENT STRATEGIES ..16
C. WEAKNESSES AND GAPS IN STATE OF THE KNOWLEDGE.........18

1. Evolutionary Perspective...19
2. Technical Perspective ..20
3. Managerial Perspective ...22

a. Decision Tree Analysis..23
b. Utility Theory...23

D. INVESTMENT VALUATION METHODS..24
1. Discounted Cash Flow (DCF) Model..25

E. REAL OPTIONS METHODOLOGY ...26

III. ADDRESSING UNCERTAINTY...29
A. INTRODUCTION..29
B. CATEGORIZATION OF UNCERTAINTIES ...30
C. INVESTMENT DECISION MAKING UNCERTAINTIES31
D. UNCERTAINTY ELICITATION..33
E. SOFTWARE ENGINEERING UNCERTAINTIES35
F. MANAGERIAL PERSPECTIVE ..36

1. Cost Estimation ..37
2. Scheduling...39

G. TECHNICAL PERSPECTIVE ..40
1. Software Specification ...41
2. Software Design and Implementation..42
3. Software Validation ...44
4. Software Evolution...45

H. TYPES OF SOFTWARE ENGINEERING UNCERTAINTIES..............46
I. MANAGING SOFTWARE ENGINEERING UNCERTAINTIES49

IV. ESTIMATING VOLATILITY...55

 viii

A. INTRODUCTION..55
B. RISK OVERVIEW ..56

1. Software Investments Risks Estimation...57
2. Requirements Risk Estimation ...57
3. Schedule Risk Elicitation...59
4. Cost Estimation Risk Elicitation...60

C. EVIDENCE GATHERING...60
1. Data Fitting Techniques ..62

D. VOLATILITY ESTIMATION: MONTE CARLO SIMULATION.........63
E. VOLATILITY REFINEMENT USING DEMPSTER SHAFER’S

THEORY ..65
1. Mechanics of Dempster-Shafer Theory ...66

F. DEMPSTER’S RULES FOR COMBINATION OF EVIDENCE70
1. Mechanics of Dempster Rule of Combination.................................71

G. VOLATILITY COMPUTATION: EXAMPLE..72
H. INTERPRETING THE FORECAST RESULTS79
I. APPLICATION OF DEMPSTER-SHAFER THEORY............................80
J. ANALYSIS ...88

V. REAL OPTIONS FRAMEWORK FOR SOFTWARE INVESTMENTS89
A. INTRODUCTION..89
B. BASE CASE VALUATION OF THE UNDERLYING ASSET................89
C. REFINING ASSET VALUE USING MONTE CARLO

SIMULATION ...93
D. REAL OPTIONS ...94

1. Buying Call and Put Options ..95
2. Selling Call and Put Options...95

E. IDENTIFYING STRATEGIC REAL OPTIONS.......................................95
F. PARTITIONING: DECOMPOSING THE SOFTWARE SOLUTION...97
G. ANALYSIS OF STRATEGIC OPTIONS ...102
H. MECHANICS OF OPTIONS VALUATION: OPTIONS PREMIUM ..103
I. VALUATION COMPUTATIONAL METHODS107
J. REAL OPTIONS ANALYSIS USING MONTE CARLO

SIMULATION ...113
K. REALIZED REAL OPTIONS FRAMEWORK.......................................113

VI. VALIDATING THE REAL OPTIONS FRAMEWORK117
A. KEY CONTRIBUTIONS..117
B. FUTURE COMBAT SYSTEM (FCS) OVERVIEW................................118
C. SOFTWARE COMPONENT: FCS NETWORK.....................................119
D. BENEFITS OF FCS...120
E. ASSUMPTIONS...121
F. TECHNICAL CHALLENGES...122
G. MANAGEMENT CHALLENGES...124
H. MANAGERIAL UNCERTAINTIES...125

1. Estimation Uncertainty ...125
2. Scheduling Uncertainty ...126

 ix

I. TECHNICAL UNCERTAINTIES...127
1. Requirements Uncertainty ..127
2. Integration Uncertainty...128
3. Performance Uncertainty..128

J. BASIS FOR SELECTING THE JOINT STRIKE FIGHTER
PROGRAM ..129
1. JSF Technology Maturation Risks ...129
2. JSF Program Management (Cost Risks)130
3. JSF Software Size (SLOC) ..130

K. RISKS IMPACT ON FCS NETWORK ..131
L. VALUATION OF THE FUTURE COMBAT SYSTEMS NETWORK.135

1. Assumption 1 ..136
2. Justification ..136
3. Assumption 2 ..137
4. Rationale for Assumption..138

M. VOLATILITY DETERMINATION..139
N. BACKGROUND OF THE EXPERTS...142
O. REFINING VOLATILITY USING DEMPSTER SHAFER’S

THEORY ..142
P. IDENTIFYING OPTIONS ...148

1. Scenario...150
a. Compound Option...150
b. Deferment Option..151

Q. STRATEGY TREE OF COMPOUND AND DEFERMENT
OPTIONS..152

R. OPTION VALUATION ..153
1. Real Options Assumptions ..153

a. Strategy A ..153
b. Strategy B ..157

S. ANALYSIS OF RESULTS..160
T. KEY BENEFITS OF APPROACH..160

VII. SUMMARY ..163
A. OVERVIEW...163
B. FINANCIAL MODEL AND ASSET VALUATION................................164
C. UNCERTAINTY IDENTIFICATION AND RISK

QUANTIFICATION..164
D. OPTION PRICING ...166
E. CONCLUSION ..167
F. FUTURE WORK...167

LIST OF REFERENCES..169

INITIAL DISTRIBUTION LIST ...177

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Software Growth in Weapons Systems (From: [10]).1
Figure 2. Strategy Formulation and Real Options (From: [6])..5
Figure 3. Two Types of IT Investment Projects (From: [20])...17
Figure 4. Evolutionary Acquisition and Spiral Development (From: [12]).19
Figure 5. Sample Decision Tree (From: [19]). ..23
Figure 6. Taxonomy of Uncertainty (From: [29]). Classification of uncertainty into

epistemic (reducible) and aleatoric (irreducible). ..30
Figure 7. Software Investment Process. ..31
Figure 8. Key Software Investment Decision Making Activities. Investment

decision making activities include choosing between a “Build”, “Buy” or
“Hybrid” acquisition strategy each of which has uncertainties associated
with them which could either be epistemic or aleotoric in nature.32

Figure 9. Uncertainty Elicitation. The “usable requirements” are elicited at a very
high level and could help guide the investment decision making or
selection of an appropriate acquisition strategy...34

Figure 10. Development Activities & Software Engineering Activities...........................36
Figure 11. Managerial Activities...37
Figure 12. Cone of Uncertainty (From: [37]). The horizontal axis contains common

project milestones such as Initial Concept, Approved Product Definition,
Requirements Complete while the vertical axis contains the degree of error
that has been found in estimates created by skilled estimators at various
points in the project..38

Figure 13. Scheduling Process. (From: [35]) ..40
Figure 14. Technical Activities. ..41
Figure 15. Software Design and Implementation Process (From: [36]).43
Figure 16. Sample Space Shuttle “Real Options”. ..48
Figure 17. Software Engineering Management Uncertainties. Managerial

Uncertainties of people, time, functionality, budget, and resources
contribute to both estimation and schedule uncertainties which are
considered to be pragmatic uncertainties...49

Figure 18. Software Engineering Technical Uncertainties. Technical uncertainties of
incomplete requirements, ambitious, ambiguous, changing/unstable
requirements contribute to software specification uncertainties, which
leads to software design and implementation, software validation and
software evolution uncertainties all of which can be categorized as
exhibiting both Heisenberg- type and Gödel-like uncertainties.50

Figure 19. Expanded View of Uncertainty Elicitation Model...51
Figure 20. Modeling Software Engineering Uncertainties..52
Figure 21. Differences Between Planned and Actual Software Schedules (From:

[38])..59
Figure 22. NPV Returns on $305 million Software Investment. The frequency

histogram shows the frequency counts of values occurring in the total

 xii

number of trials simulated. The vertical bars shows the frequency of a
particular NPV occurring out of the total number of trials, while the
cumulative frequency depicted by the smooth line shows the total
probability of all values at and below the maximum NPV occurring in the
forecast...74

Figure 23. Volatility of the returns on the $305 million Software Investment. The
forecast statistics summarizes the distribution of the forecast values in
terms of the four moments of a distribution...75

Figure 24. Probability of Requirements Increases during the Specification Phase...........75
Figure 25. Statistics of Requirements Increases during Specification Phase. The

forecast statistics summarizes the distribution of the forecast values of the
probability of requirements increases during the specification phase in
terms of the four moments of a distribution...76

Figure 26. Probability of Requirements Increases during the Development Phase. The
frequency histogram (Figure 26 on previous page) shows the frequency
counts of values occurring in the total number of trials simulated. The
vertical bars shows the frequency of a particular probability of
requirements increase during the development phase occurring out of the
total number of trials, while the cumulative frequency depicted by the
smooth line shows the total probability of all values at and below the
maximum probability of requirements increase during the development
phase occurring in the forecast. ...77

Figure 27. Statistics of Requirements Increases during Development Phase. The
forecast statistics summarizes the distribution of the forecast values of the
probability of requirements increases during the development phase in
terms of the four moments of a distribution...77

Figure 28. Probability of Requirements Increases during the Validation Phase. The
frequency histogram (Figure 28 on previous page) shows the frequency
counts of values occurring in the total number of trials simulated. The
vertical bars shows the frequency of a particular probability of
requirements increase during the validation phase occurring out of the
total number of trials, while the cumulative frequency depicted by the
smooth line shows the total probability of all values at and below the
maximum probability of requirements increase during the validation phase
occurring in the forecast...78

Figure 29. Statistics of Requirements Increases during Validation Phase. The
forecast statistics summarizes the distribution of the forecast values of the
probability of requirements increases during the validation phase in terms
of the four moments of a distribution. ...78

Figure 30. Revised NPV Returns on $305 million Software Investment. The
frequency histogram shows the frequency counts of values occurring in
the total number of trials simulated. The vertical bars shows the frequency
of the revised NPV returns occurring out of the total number of trials,
while the cumulative frequency depicted by the smooth line shows the

 xiii

total probability of all values at and below the maximum revised NPV
occurring in the forecast...87

Figure 31. New NPV Returns on $305 million Software Investment based on refined
probabilities. The forecast statistics summarizes the distribution of the
revised forecast values in terms of the four moments of a distribution.87

Figure 32. Sample Options to Address Software Investments (From: [6]).......................97
Figure 33. Strategy Tree depicting strategic pathways for the Software Executive.

Real Options framework around the KC-X software program and shows
the different strategies the software executive or the decision maker can
adopt to hedge risk in order to mitigate cost and schedule overruns.101

Figure 34. Relationship between Stock Price and Call Option (From[6]).105
Figure 35. Scenario A: Low stock price volatility Scenario B: High stock price

volatility (From: [6]). ...106
Figure 36. Binomial Lattice...109
Figure 37. Underlying Asset Lattice ...111
Figure 38. Option Valuation Lattice..112
Figure 39. Realized Real Options Framework ..116
Figure 40. FCS Core Systems (From: [58]). Core systems of the Future Combat

Systems depicting the software component (Future Combat Systems
Network) as the “heart” of the overall program...118

Figure 41. FCS Projected Software Lines of Code (in thousands) (From: [58]).122
Figure 42. Flow of FCS Overarching Requirements to System-Level Requirements

(From: [58]). ..123
Figure 43. FCS Spiral Development Strategy and Software Life Cycle Reviews

(From: [64]). ..124
Figure 44. FCS Program Management (From: [62])...129
Figure 45. JSF Program Management (From: [62])..130
Figure 46. SLOC of Historical Acquisition programs of ..131
Figure 47. Impact of Risk on FCS Network..132
Figure 48. Risk Simulator output depicting returns on a ..140
 $163.7 billion Investment in the FCS Network. The frequency histogram

shows the frequency counts of values occurring in the total number of
trials simulated. The vertical bars shows the frequency of a particular NPV
occurring out of the total number of trials, while the cumulative frequency
depicted by the smooth line shows the total probability of all values at and
below the maximum NPV occurring in the forecast......................................140

Figure 49. Volatility of the returns on the $163.7 billion Investment.............................141
 in the FCS Network. The forecast statistics summarizes the distribution of

the forecast values in terms of the four moments of a distribution................141
Figure 50. Risk Simulator output depicting revised returns on a $163.7 billion

Investment in the FCS Network with revised probability estimates. The
frequency histogram (Figure 49) shows the frequency counts of values
occurring in the total number of trials simulated. The vertical bars shows
the frequency of a particular NPV occurring out of the total number of
trials, while the cumulative frequency depicted by the smooth line shows

 xiv

the total probability of all values at and below the maximum NPV
occurring in the forecast...147

Figure 51. Revised volatility of the returns on the $163.7 billion Investment in the
FCS Network. The forecast statistics summarizes the distribution of the
forecast values in terms of the four moments of a distribution......................148

Figure 52. Strategy tree depicting the types of options for scenario involving 5
Component Systems of the FCS facing Uncertainty.152

Figure 53. Screen Shot of our Model in Super Lattice Solver 3.0.154
Figure 54. Lattice of Underlying Asset (FCS Network). ..155
Figure 55. Phase 1 Option Valuation Lattice. ...155
Figure 56. Phase 2 Option Valuation Lattice. ...156
Figure 57. Phase 3 Option Valuation Lattice. ...156
Figure 58. Audit Sheet For Strategy A..157
Figure 59. Real Options Super Lattice Solver Deferment Model.158
Figure 60. Audit Trail of Option to Defer Model..158
Figure 61. FCS Network Underlying Asset Lattice of with Deferment Option..............159
Figure 62. Options Valuation Lattice under Deferment..159

 xv

LIST OF TABLES

Table 1. Program Management Failures of Top Three Major Weapons Systems.2
Table 2. Net Present Value Decision Making Criteria (From: [17])26
Table 3. Summary of Software Engineering Uncertainties. ..47
Table 4. Orthogonal Sum Of Basic Probability Assignments For Conflicting

Evidence...71
Table 5. Matrix Template Used To Compute Orthogonal Sum Of Basic Probability...83
Table 6. Orthogonal Sum Of Basic Probability Assignments For Consistent

Evidence...84
Table 7. Orthogonal Sum Of Basic Probability Assignments For Conflicting

Evidence...85
Table 8. Value of an Option...107
Table 9. Factors Affecting Value of an Option...108
Table 10. FCS Software Growth Estimates. ..119
Table 11. FCS Software Blocks, Percentage of Completion, and Delivery Dates

(From: [64]). ..125
Table 12. Comparison of the Original Cost Estimate and Recent Cost Estimates126
 for the FCS Program (in billions of dollars) (From: [64]).126
Table 13. Software packages and associated requirements problems (From: [59]).127
Table 14. Joint Strike Fighter Cost and Schedule Increases from program inception...131
Table 15. Comparison between JSF and FCS SLOC...133
Table 16. Volatility computation using Caper Jones approach.134
Table 17. Caper Jones’ industry averages and maximum rates in various134
 industries (From: [67]). ..134
Table 18. NPV of FCS Network. ...138
Table 19. Screen capture of risk model developed in the Risk Simulator.140
Table 20. Summary of the three independent estimates of the FCS program143
Table 21. Screen capture of orthogonal matrix..145
Table 22. Screen capture of risk model developed in the Risk Simulator with revised

estimate. ...147

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

The United States Air Force afforded me an incredible opportunity to earn a Ph.D.

in Software Engineering from the Naval Postgraduate School, the flagship institution of

the United States Navy for which I am truly indebted and forever grateful. However I

could not have achieved this milestone in my life and my career without the tremendous

support I received from the first-rate professors, students, and friends who guided me

through this journey, most importantly the incredible support I received from my family.

I wish to thank my dissertation committee members Professor Man-Tak Shing,

Professor Bret Michael, Professor Mikhail Auguston, Dr. Johnathan Mun and Professor

Tarek Abdel-Hamid, for their time, insightful guidance and remarkable patience in

teaching and mentoring me in my research. I offer special thanks and gratitude to Prof.

Shing and Dr. Mun for all of the extra hours they devoted to my research. To Prof. Shing,

your constant guidance and thought-prodding questions was instrumental to my staying

on the right track during the course of my study. To Dr. Mun, your constant guidance and

long discussions we had on Real Options were critical to my success and without your

guidance I would have been lost. To Prof. Auguston and Prof. Abdel-Hamid, your

support and different perspectives helped shape my studies. I also offer special thanks to

Prof. Shing and Prof. Michael for all their efforts to ensure I received the necessary

funding to cover my studies.

To LTC Tom Cook (PhD), whom I first met at Missile Defense Agency and later

went on to earn his PhD at the Naval Postgraduate School, it was always great to work

with you both as a superior officer at Missile Defense Agency and as a student at the

Naval Postgraduate School. Your guidance and mentoring has been invaluable

throughout my studies at the Naval Postgraduate School

I would also like to acknowledge and thank Professor Richard Riehle and

Professor Osmundson for the knowledge they impacted on me through their courses. This

knowledge definitely provided me with the foundations to conduct me research.

 xviii

I would also like to thank my superiors at the 459th Air Refueling Wing, Andrews

Air Force Base, Maryland, notable Lt Col Dale Bateman for his constant, mentoring and

guidance. Your constant questions on my progress served to keep me on track while

balancing operational requirements at the Squadron. Thanks to Capt Justin O’Brien, a

dear colleague whom I have served with in both peacetime and wartime deployments.

Your interest in my progress and constant pulse checks was extremely commendable.

I thank my Mother and Father, both distinguished academics in their own rights

for instilling in me the value of education very early on life. Your constant prayers and

guidance and encouragement have kept me going and I am who I am today due to values

and beliefs you instilled in me and I am confident that this achievement serves as an

indication of your efforts and makes you proud of me. I must also thank my brothers

Bamiji and Kolawole, as well as my sisters, Yetunde and Victoria for their support and

encouragement during my time in school.

Most importantly, I would like to thank my most precious wife Neema and

adorable son Alexanderpaul for their patience, support and steadfast love as I burnt the

midnight oil in pursuit of this endeavor. Your love, encouragement and words of wisdom

and sacrifices made me overcome the hurdles and challenges I faced and words alone

cannot explain how much I appreciate you and your support and I am truly indebted to

you.

To my son Alexanderpaul, the little boy in my life, your smiles and hugs always

make me remember why I began this journey and I dedicate this dissertation to you with

the hopes that you would someday continue what has now become a family legacy of the

pursuit of intellectual curiosity and academic excellence.

 1

I. INTRODUCTION

A. MOTIVATION

Software engineering is defined as an engineering discipline concerned with all

aspects of software production. Given this definition, software in itself is a complex

intangible artifact, acquired and produced via a set of decision-making activities

integrated with a software engineering process with the goal being to deliver a product

that meets the customers’ needs and requirements within the stipulated cost and schedule

constraints. The role of software as a “technology platform” in U.S. Department of

Defense (DoD) weapons systems has steadily increased over the last 40 years (Figure 1)

jumping from providing a mere 8% of weapons systems functionality in 1960 to

providing 80% of weapons systems functionality in 2000.

Software Growth in Weapons Systems

8 10

20

35

45

65

80

0

10

20

30

40

50

60

70

80

90

F -4 A - 7 F - 111 F -15 F -16 B - 2 F/A 22

1960 1964 1970 1975 1982 1990 2000

Weapons Systems and Year Entered Service

%
 o
f
F
u
n
ct
io
n
s
P
er
fo
m
ed

 in
S
o
ft
w
ar
e

Figure 1. Software Growth in Weapons Systems (From: [10]).

Thus, considering the immense presence and ever-increasing role which software

plays not only in weapons systems, but in our every day lives, industry and government,

software can be viewed as an inexhaustible technological resource, vital and necessary

for the good functioning and evolution of modern day society [4].

 2

The software acquisition lifecycle, which encapsulates the activities related to its

procurement, development, implementation and subsequent maintenance, continues to

present challenges to software executives and program managers due to increasingly

complex organizational requirements and the ever increasing role which software plays in

U.S. Department of Defense (DoD) weapons systems. Various factors and considerations,

most of which are complex in nature compound the software acquisition process, factors

which present themselves in the form of “uncertainties”, and which have the potential of

introducing risks if the uncertainties are not adequately addressed and or resolved.

Consequently, an integrated decision-making approach that explicitly addresses the risks

associated with the pertinent software acquisition activities of procurement methods,

software development approaches, implementation strategy and future evolution of the

software needs to be considered to better guide the software acquisition decision-making

process.

B. STATEMENT OF THE PROBLEM

In the U.S. DoD, technology acquisitions in the form of software intensive

weapons systems serves as the cornerstone of the transformation strategy currently

adopted by the U.S. Military in its efforts to modernize its fleet of weapons systems for

future conflicts. However, the benefits of these force “enablers” continue to be plagued

by massive cost and schedule overruns. The resulting impact has often led to a reduction

in the scope of desired functionality as depicted in Table 1 below which leaves the war-

fighters needs unfulfilled.

Program
Initial

Investment
Initial

Quantity
Latest

Investment
Latest

Quantity

% Unit
Cost

Increase

%
Quantity
Decrease

Joint Strike
Fighter $189.8 billion

2,866
aircraft $206.3 billion

2,459
aircraft 26.7 14.2

Future Combat
Systems $92 billion 18 System $163.7 billion

14
systems 54.4 22.3

F-22A Raptor $81.1 billion 648 aircraft $65.4 billion
181

aircraft 188.7 72.1

Table 1. Program Management Failures of Top Three Major Weapons Systems. 1

1 Numbers were complied from various GAO reports and were current as of 2007.

 3

This dilemma is highlighted in a 2007 interview of the Army’s Program

Executive Officer (PEO) for Ammunition, in which “the ability to acquire and maintain,

safe, reliable supportable and modifiable software systems which met user requirements

in an environment of rapid technological advances” was identified as their biggest

challenge in software acquisitions [5]. Furthermore, the U.S. Government Accountability

Office (GAO) responsible for reviewing weapon systems investments found consistent

problems of cost increases, schedule delays, and performance shortfalls exacerbated by

factors such as pressure on program managers to promise more than they could deliver.

These concerns infer a resounding theme which continues to be resonated within the

software acquisition community: Meeting customer requirements within cost and

schedule constraints. This has led to calls for reform in the DoD acquisition strategy and

the incorporation of broad improvement strategies which embraces the best practices of

software-intensive systems acquisition from the commercial sector.

Balancing the satisfaction of a customer’s ever-changing requirements within the

realms of meeting both current and future uncertain operational needs against the costs

and schedule constraints poses a cumbersome challenge to the software executive,

thereby making software-investments a very risky venture; risky in the sense that

software engineering and investment decisions are plagued by uncertainties which more

often than not leads to varying degrees of risk ranging from operational shortfalls to cost

and schedule overruns.

The inefficiencies of current management techniques as shown in the acquisition

failures (Table 1) (failure to meet war-fighter’s needs on time and schedule) highlight the

needs of new management approaches that proactively plan for, and factor in uncertainty

into their acquisition strategy. This is because the acquisition of software, its

development and the operational use of the software are all dominated by human action,

human judgment and decision making, and inevitably human error [2]. The outcome is,

therefore, often uncertain and unpredictable, and leads to unavoidable uncertainties [2].

Thus the highly uncertain nature of software investment decisions makes the

management of uncertainties a major issue in software engineering. The work of Ziv and

 4

Richardson, which led to the proposal of the “Uncertainty Principle in Software

Engineering” (UPSE), laid out the groundwork for identifying the software development

uncertainties facing the software project manager and the Real Options approach

proposed in this study is an attempt to identify, quantify, value, hedge and manage the

uncertainties which introduces both technical and managerial risks in the form of product

quality and cost and schedule overrun.

C. RESEARCH OBJECTIVES

This research takes a holistic approach towards addressing both the technical and

managerial risks which plague software acquisitions through the application and

employment of techniques based on financial options theory (Real Options). As it stands

today, software is the major expense in software intensive systems. Therefore software is,

and should be treated as a capital investment and an approach emphasizing a strategic

investment methodology in its acquisition is necessary. This approach would emphasize

the linking of program management decisions to current and future unknown situations

within the stipulated parameters of cost, schedule and functionality thus giving the

managers a set of choices or options.

These choices are called “Real Options” and originate from research done to price

financial option contracts in the field of financial derivatives. Its underlying premise is

based on the recognition that strategic flexibility in software engineering decisions can be

valued as a portfolio of options or real assets, much akin to options on financial securities

which have real economic value under uncertainty [9]. It centers on real (non-financial)

assets and is valuable because they enable the option holder (software program manager)

to take advantage of potential benefits while controlling risk.

It is assumed, that when employed within the context of a software-related capital

investment effort, as a strategic decision-making framework a Real Options approach

makes the case that strategic action identifies and creates valuable options which could be

valued and exercised (if appropriate), starting the cycle of value creation and new options

all over again [6]. This strategic decision-making process (Figure 2) is based on the

general concepts of initiating the software acquisition process with a situation

 5

assessments phase, generating the appropriate strategic actions and deriving the benefits

or value created either explicitly or in the form of Real Options. While risks associated

with large-scale software-related capital investments or acquisitions have been effectively

managed through the application of stochastic frameworks, we believe that a framework

based on Real Options theory would better balance customer requirements as dictated by

operational needs within financial viability and schedule constraints through the

identification, valuation and optimization of strategic decision pathways created in the

form of Real Options.

Figure 2. Strategy Formulation and Real Options (From: [6])

The Real Options approach calls for the existence or satisfaction of certain pre-

conditions before it can be applied which we believe are directly correlated to the various

activities associated with software related capital investments. These pre-conditions as

outlined in [14] call for the following:

1. The existence of a basic financial model used to evaluate the costs and

benefits of the underlying software asset (e.g. Net Present Value (NPV) as

the Real Options approach builds on the existing tried-and-tested

approaches of current financial modeling techniques.

2. The existence of uncertainties during the software-related capital

investment decision-making process otherwise, the Real Options analysis

becomes useless as everything is assumed to be certain and known.

3. The uncertainties surrounding the software-related capital investment

decision-making process must introduce risks which directly impact the

 6

decision-making process. Real Options could then be used to hedge the

downside risk and take advantage of the upside uncertainties.

4. Management must have the flexibility or option to make mid course

corrections when actively managing the project.

5. Management must be smart enough to execute the Real Options when it

becomes optimal to do so.

This study seeks to investigate the application of the Real Options approach to

both the technical and managerial risks associated with software-related capital

investments from an integrated perspective with the goal being to develop a generic yet

integrated Real Options-based decision-making framework that could be applied to

address risks associated with DoD software acquisitions.

D. HYPOTHESIS

The traditional Real Options methodology, when enhanced and properly

formulated around a proposed or existing software-investment, provides a framework for

guiding software acquisition decision-making by highlighting the strategic importance of

managerial flexibility in balancing the satisfaction of a customer’s requirements within

the realms of the associated cost and schedule constraints.

E. RESEARCH METHODOLOGY

In an assessment of previous work conducted, it was discovered that while the

Real Options approach had been largely studied independently from both technical and

managerial perspectives, insufficient work had been done from a full spectrum “point of

view” particularly, in the software engineering domain, i.e. the application of Real

Options to both technical and managerial risks simultaneously in the context of a capital

intensive software investment effort. Consequently, the approach proposed in this

research explicitly identifies both the technical and managerial challenges facing software

acquisition efforts and the formulation of a framework to address both concerns

simultaneously rather than independently. The underlying premise for employing an

integrated approach towards managing both technical concerns and managerial concerns

 7

was based on the belief that both concerns should not be treated independently due to

high correlation between technical and managerial issues. The following shows the

research method undertaken:

1. Tactics for Producing the Proposed New Method: This study,

determines and establishes compliance with Real Options pre-conditions 1

through 3 and explicitly infers that management has both the flexibility to

develop Real Options to make mid course corrections and the wisdom to

execute the Real Options when it becomes optimal to do so during the

course of a software acquisition effort, thereby meeting the requirements

established in pre-condition 4 & 5.

The approach involved the development of a systematic methodology of

uncertainty identification and risk quantification using the volatility of the

returns on the software investment as a proxy to measure the risk facing a

given software-related capital investment effort.

The crucial issue of measuring and estimating the risks posed by

uncertainty (pre-condition 3) to the software acquisition is addressed by

employing a volatility estimation/refinement technique, based on

Dempster-Shafer Theory (DST) or (Evidence Theory) which relies on

“beliefs” and “plausibility” probability assignments.

2. Methods to Substantiate New Method: To substantiate the results, a

Real Options framework is developed explicitly showcasing the

refinement of volatility estimation through the application of Dempster-

Shafer Theory on Evidence. We attempted to validate the proposed

approach using the software component (Future Combat Systems

Network) of the troubled multi-billion dollar U.S. Army Future Combat

Systems acquisition program as an example. Where feasible variables

were derived and/or computed and in situations where data was

unattainable, reasonable estimates along with the appropriate justification

were utilized.

 8

F. SIGNIFICANCE AND POTENTIAL IMPACT

Software is about change. “Design for change”, “Invest with change in mind” are

thus promoted as a value-maximizing strategy provided one could anticipate changes [8].

In most cases a software product is outdated even before it is delivered to the customer.

More often than not, this is mostly due to changing customer requirements in response to

changing business conditions. While arguments might be made by proponents and

opponents that Moore’s Law2 holds or does not hold in this situation, the reality is

change is inevitable in order to stay competitive in today’s environment. Therefore

software change or evolution is inevitable. However, the time and mode of change itself

is what is uncertain as it might be too early to predict, hence the need for a flexible risk-

driven approach towards software-related capital investments both before and during the

investment process.

This phenomenon of continuous change has created the dilemma of huge cost and

schedule overruns. In a yearly assessment and summary of major weapons acquisition

programs published by the Government Accountability Office (GAO) it was reported that

many, if not most, acquisition programs are experiencing cost overruns and schedule

delays in their software development segments. For example in fiscal year 2006, the U.S.

DoD spent as much as 30% ($12 billion) of its estimated budget of $40 billion for

research, development, testing and evaluation on reworking software [7], a significant

percentage when compared to the private sector software development. GAO also pointed

out that, in the past five years, although “DoD has doubled its planned investments in

new weapons systems from $700 billion to $1.4 trillion, this huge increase has not been

accompanied by more stability, better outcomes or more buying power for the acquisition

dollar” [7]. In an environment where program success has meant paying for massive cost-

escalation, slipping plans years beyond their planned dates, making major cuts in the

software functionality, the approach proposed in this study addresses these issues by

taking a proactive approach to risk management by planning for an paying for risk up

front. This is not to say that risk management strategies are not being adopted today, but

 9

the failure of management to take a proactive approach towards risk management by

employing what are believed to be “tactical” strategies, which unfortunately have not

been proven to be successful

G. SUMMARY OF MAJOR CONTRIBUTIONS

This study contributes to the body of knowledge in the areas of software

acquisition risk management by emphasizing the value of employing a proactive risk

management approach. While there are several acquisition or decision-making

frameworks currently utilized for decision-making in DoD software-related capital

investments, at the time of this study we were not able to identify any situation where the

Real Options approach had been explicitly applied to a single software acquisition

program to guide the investment decision-making process; rather, we were able to

identify instances where it had been proposed to employ Real Options within the context

of IT portfolio management to manage a suite of IT investments.

Specifically this study emphasizes the value of employing an agile approach in

software-related capital investments/acquisitions by exploiting and borrowing on the

concepts of the value of flexibility as currently adopted in Agile Development approaches

to software development and incorporating this flexibility at the software acquisition

level. We also emphasize the value of information realized by exposing the unknowns

(uncertainties) much earlier in the software acquisition process and taking advantage of

the embedded flexibility of adapt to the uncertainties.

In this study we explicitly propose the use of Dempster-Shafer Theory on

Evidence as a volatility estimation refinements mechanism, since volatility is a key input

parameter needed for Real Options analysis. While volatility is just one of the parameters

needed for Real Options analysis, it is the most difficult of all the parameters to estimate.

We attempt to overcome the complexity of volatility estimation by proposing the use of

Dempster-Shafer Theory on Evidence, a technique first proposed for application in the

domain of sensor fusion. It is a mathematical theory of evidence, based on belief

2 Moore’s Law describes the driving force of technological and social change by positing that

advances in technology increases exponentially, by doubling approximately every two years.

 10

functions and plausible reasoning, which is used to combine separate pieces of

information (evidence) to calculate the probability of an event. We posit that it could be

used to address both aleotoric and epistemic uncertainties inherent in software-related

capital investments by “fusing” and reducing uncertainties to the maximum extent

possible as they become revealed thereby facilitating a more accurate estimate of the

risks propagated by uncertainty and allowing us to develop the appropriate option in

response based on a more accurate volatility measure.

Lastly, this strategic program management approach provides a means of

overcoming the limitations associated with the spiral development process currently

utilized in the Evolutionary Acquisition (EA) approach adopted in the DoD 5000 series

acquisition directives by providing the much needed upfront risk management planning at

the strategic level to complement the risk management approaches employed in the spiral

development process.

H. LIMITATIONS

The Real Options approach requires us to compute two different values with some

degree of confidence. These values are the cost of the software acquisition effort and the

probability that circumstances would develop such that we would like to exercise the

option. However due to the lack of detailed data on the Future Combat Systems program

at the level of granularity which we would have desired, we made several assumptions

and provided justification as applicable. To determine the probability estimate we utilized

modeling techniques along the lines of the three key assumptions made below and refined

our estimate using Dempster-Shafer Theory on Evidence. This study is the first attempt at

investigating the feasibility of utilizing Dempster-Shafer Theory on Evidence within the

context of a software-related capital investment for volatility estimation, and while we

were able to demonstrate its use, we did make some assumptions in the computation of

our belief functions due to the lack of detailed data at our desired level of granularity in

the estimates provided by the Cost Analysis Improvement Group and the Institute for

Defense Analysis.

 11

While we successfully applied the Dempster-Shafer Theory within the constraints

of our assumption in our study, it is not without its limitations and critics. Critics of the

Dempster-Shafer Theory notably Judea Pearl, have argued that

it is misleading to interpret belief functions as representing either
"probabilities of an event," or "the confidence one has in the probabilities
assigned to various outcomes," or "degrees of belief (or confidence, or
trust) in a proposition," or "degree of ignorance in a situation” [23].

To overcome this criticism we represent belief functions as probabilities that a

given proposition is provable from a set of other propositions [23].

I. ASSUMPTIONS

 As mentioned in the limitations section of this study, detailed data was not

available at the desired level of granularity. While we were able to obtain data for the

overall Future Combat Systems program, which included combined costs of both

hardware and software components, we were not able to isolate software related costs,

i.e. costs of the Future Combat systems Network (FCS-N) (software component of the

FCS program), from the overall cost data. Consequently, for the purposes of establishing

a financial model of the Future Combat Systems program, we made three key

assumptions.

1. For cost purposes, it was assumed that the cost of the Future Combat

Systems Network is equal to the costs of the overall Future Combat

Systems program. What is accomplished by making this assumption is

rather than picking an arbitrary value as the cost of the Future Combat

Systems Network, we treat the overall Future Combat Systems program as

consisting of software alone.

2. We assume the estimated future benefits (Asset Value) of the Future

Combat Systems Network, while unknown, translated into a positive value

under traditional Net Present Value techniques (i.e. benefits outweigh

costs).

 12

3. We assume the independent assessments provided by the Cost Analysis

Improvement Group and the Institute of Defense Analysis includes belief

assignments based on masses of evidence during the application of

Dempster-Shafer Theory. That is, the executive or decision maker is

provided not only with a raw set of the risk factors of requirements creep,

integration risk, performance risk, but with additional measures: belief in

the estimation of the risk factors and certainty of the estimation during the

decision making process.

J. DISSERTATION ORGANIZATION

This dissertation is organized around seven chapters, containing results from our

Risk Simulator provided by Real Options Valuation Inc., and a list of references and

bibliography.

Chapter II discusses the relevant background material and highlight weaknesses

and gaps in the current state of knowledge by discussing key areas of concern and

limitations of current investment valuation models. We conclude this chapter by

providing the reader with some insights into real options theory.

Chapter III presents detailed insights in the area of uncertainty, a key component

necessitating the need for the real options approach proposed. Specifically we categorize

the uncertainties facing program mangers into technical and managerial uncertainties and

further expand on the details associated with each category of uncertainty.

Chapter IV addresses the issue of estimating the volatility of the returns of a

software investment based on the prevalent risk factors introduced by uncertainty. We

also depict how the proposed Dempster-Shafer Theory based on the Dempster’s rule of

combination is used to combine evidence from different sources.

Chapter V culminates in the formulation of the proposed Real Options framework

that could be applied to software-related capital investments.

 13

Chapter VI validates the proposed framework by exploring the conceptual

application of our proposed framework to the U.S. Army’s Future Combat System

Network (software component) acquisition program.

Chapter VII presents a summary of our findings, contributions and

recommendations for future work.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

II. ASSESSMENT OF PREVIOUS WORK

The proper measurement of the success of software investments requires
more than compliance with models of technical perfection. Technical
excellence of programming code is highly desirable but clearly
insufficient. Nowadays the most profitable and popular software is
notorious for its bugs and glitches. Economic utility and independent
measures of customer satisfaction must be the ultimate arbiters of all
judgment about the utility of the software.

 (Strassmann, 1997 p.147)

A. SOFTWARE INVESTMENTS BACKGROUND

The software investment process is a complex process plagued by a myriad of

activities which could be broadly categorized into technical and managerial issues, both

of which are inextricably linked. Understanding the risks associated with software

investment activities is therefore an important consideration for a project manager and

must be captured in an investment strategy designed to accomplish the goals of the

investment effort and ultimately executed in an acquisition plan. Therefore given its

complexity, a software project manager must be well equipped and postured to deal with

a large synergy involving players ranging from the project manager him/her self to the

end users [11]. This is accomplished through the development and use of a systematic

decision-making approach that would bridge the gaps between technical and managerial

activities in the form of a framework which would enhance decision-making associated

with choosing the appropriate courses of action in a complex, uncertain, or conflict-

ridden situation.

Technical activities may range from requirements specification to implementation

while managerial activities may range from planning to risk management with the early

and unambiguous definition of software requirements being key to the investment

process. Regardless of the activity, both of these categories of activities presents

 16

challenges in the form of uncertainties necessitating the need for a methodology to

identify uncertainty, estimate and ultimately manage risk to further guide the investment

process.

From a technical perspective, the software architecture is viewed as the earliest

design artifact, which realizes the requirements of the software system [24] with the

main focus of the software architecture being to provide a “high level” abstract design

plan with just enough detail to manage complexity, to provide the overarching framework

and guidance for detailed design. Thus software architecture can be viewed as:

the manifestation of the earliest design decisions, which comprise the
architectural structure (i.e., components and interfaces), the architectural
topology (i.e., the architectural style), the architectural infrastructure (e.g.,
the middleware), the relationship among them, and their relationship to the
other software artifacts (e.g., low-level design, testing etc.) [24]

However, in virtually all software engineering activities, the software architecture

is usually driven by customer requirements, with several iterations occurring between

requirements and architectural design until a preliminary design is finalized, from which

a baseline for detailed design can be established. Thus we can reasonable claim that

customer requirements, as identified by an operational need reflect the earliest

manifestation of the software investment effort which precedes the software architecture.

B. INVESTMENT STRATEGIES

Traditionally speaking there are two main approaches which guide a software

investment strategy; custom development of the software and acquisitions based on the

use of COTS products, otherwise known as the “build vs. buy” phenomenon. Each of

these present their pros and cons and need to be carefully evaluated before choosing one

approach over the other. This is highlighted in Figure 3 below in which differences are

depicted between both approaches in the form of “time to realization of benefits” [20].

However it must be noted that the study conducted in [20] lacked a clear delineation

between software and the associated infrastructure (hardware etc) within the investment

framework. Specifically the research in [20] highlights that in the COTS acquisition

approach, the organization has the option of spending an amount of money (K) to acquire

 17

the IT asset. At any point of time (t) during an interval T, K is known with certainty;

however, future changes in K are uncertain. After the asset is acquired, the organization

starts receiving a set of cash flows (C) representing the differential benefits derived from

acquiring the IT asset.

Figure 3. Two Types of IT Investment Projects (From: [20]).

Given that both the cost and the benefits are uncertain, it might be better to wait

before making the investment. Furthermore, if the cost of a particular IT asset decays

over time, there is an additional incentive for waiting before acquiring the asset.

However, benefits also decrease with time because waiting will reduce the length of

period in which the organization will be able to receive the benefits associated with the

investment. Therefore, both elements have to be taken into consideration for making an

optimal decision [20].

In the development approach, the asset is not acquired instantaneously; rather, it is

the result of a development project having an uncertain duration () in which the firm

keeps investing at a rate that is less than or equal to a maximum investment rate (Im).

Only until the project is completed and the remaining cost (K) is zero, the firm receives

the underlying asset (V) [20].

 18

While the software investment approach is somewhat analogous to the IT

investment approach depicted above, this paradigm however, is not completely

representative of all software engineering investment efforts, as software development

usually takes a considerable amount of time, and the benefits might not be obtained until

the project is completely finished. It is however possible to start enjoying benefits of the

software investment, albeit partially when modern software processes such as

incremental development which support custom software development or COTS

development within an evolutionary context are utilized.

C. WEAKNESSES AND GAPS IN STATE OF THE KNOWLEDGE

In general one of the key challenges facing software and its acquisition are

requirements issues. This dilemma could include scenarios of inadequate or insufficient

thought or effort going into the upfront investment decision to outright ignoring the

future evolution of the software investment effort under consideration. The theoretical

foundations of strategic planning offer a focus on “long-term” thinking, and when we

think “long-term” in software engineering, evolution readily comes to mind. An

evolutionary frame of mind should therefore form the underlying premise under which

all software-related capital investment are made with emphasis being on the keyword

“capital”, where future operational requirements would serve as the driver of evolution.

While options theory has been largely studied and applied to decision-making in

the area of Information Technology (IT) portfolio management and to the various

software artifacts, e.g. software architecture [24], little work if any has been done to study

its application to all the decision-making activities (both technical and managerial) within

a single framework to manage a single software investment as opposed to a portfolio of

software investments. A holistic approach towards managing technical and the associated

managerial issues is therefore needed to keep up with the advances in the technical

aspects of software engineering and to also better manage risk. This dilemma is

highlighted in several reports published by the U.S. Government Accounting Office

 19

(GAO), and in a white paper on effective technology investment strategies [13], the

author calls for the need for a more rigorous scientific process for developing a

company's technology strategy and technology investment, in lieu of the trial-and-error

process.

Thus given these gaps in the current state of the knowledge, software executives

and program managers need better decision making tools and methodologies to guide

their software investment decision-making activities. To accomplish this, the DoD

proposed the Evolutionary Approach to software acquisition which we discuss below

along with the technical and managerial perspectives.

1. Evolutionary Perspective

In May 2003, the U.S. Department of Defense (DoD) promulgated revised 5000

series acquisition directives and instructions that mandated an evolutionary approach

known as Evolutionary Acquisitions (EA) (Figure 4) which relied on the spiral

development process.

Figure 4. Evolutionary Acquisition and Spiral Development (From: [12]).

The strategy employed within the EA construct was to deliver capabilities in

incremental fashion recognizing the up-front need for future capability improvements

closely integrate managerial and technical decision-making. However, the overarching

 20

limitation of this approach could be narrowed down to the chosen development process -

the spiral development process. The spiral development process assumes the end-state

requirements are known at the inception of the development process [12]. In a study

conducted by RAND, it was discovered that EA programs required considerable

additional up-front management planning and engineering workload and the budget

sources to support them [12]. The spiral development process is a risk-driven

development approach which consists of four main phases namely: determining

objectives/alternatives, risk analysis, development and planning. The phases are

iteratively followed one after the other building progressively on the first iteration until a

complete software product is built. Of the four phases, the risk analysis phase is the most

important because the project's success is highly dependent on the ability to identify and

resolve risk. Risks are continuously discovered and high-priority risks drive the

development process. However, besides the obvious limitation of the spiral approach

being a somewhat costly approach, we believe that risk management should be a factor

that is addressed much earlier in the software engineering process – at the acquisition

level, during the investment decision making activities prior to the commitment to

acquire and or develop a software system. The appropriate risk mitigation/reduction

strategies should be employed much earlier in the software investment/acquisition

process.

Furthermore the RAND study [12] also determined that EA programs using the

spiral development process needed to focus on capability mission objectives rather than

traditional technical requirements and in the analysis of five case studies all of the case

studies pointed to the conclusion that the capabilities and requirements definition and

management processes continued to remain as major challenges in all EA programs.

2. Technical Perspective

Relative to other engineering fields, software engineering is still very much in its

infancy. Computer science, management science and some other fields have greatly

influenced the theoretical foundations for software engineering, however the

standardization and the lack of a clean theory to make software design decisions

 21

continues to compound the problem of software investments. While the guiding

principles of software design which center on abstraction, information hiding,

localization, modularity, uniformity, conformability, completeness serve to ensure that a

useful software product is developed, by establishing a foundation for which the overall

goals of correctness, flexibility, robustness, efficiency and reusability in software design

are achieved, the challenge remains, one of correlation of these idiosyncratic principles

from the perspective of options theory [25]. The work of Kevin Sullivan [25], also

proposes an options-based interpretation in software design activities by connecting

options theory to software design in two steps: 1) viewing software design as a value

creating opportunity to make irreversible capital investments in software assets of

uncertain value with the architecture, documents, program generators, and information

hiding interfaces being examples of assets and 2) rationalizing decisions about whether

and when to make such investments by appealing to options theory and viewing

investment opportunities as call options [25]. The uncertainty in the value of investing in

a software asset makes this problem a prime candidate for the application of a decision

making theory such as options theory to help guide the overall investment process and

consequently software program managers are faced with the problem of overcoming

some rigid dictums in software engineering since there are no reliable proxies to guide

optimal investment strategies.

Thus software artifacts are and should be treated as software assets due to the

particular value they add to the overall investment process. Assets can be software

components, objects, software requirement analysis and design models, domain

architecture, database schema, code documentation, manuals, standards, test scenarios,

and plans and more often than not were either created by prefabrication i.e. the assets

were developed with posteriori reuse thought process (designed for reuse). An effective

investment strategy should not only address the possible uncertain future evolution of the

software but also factor in an effective reuse strategy that could possible support the

future evolution of the software. This of course introduces the problem of architectural

stability and the ability of the architecture to accommodate the changes, a problem which

 22

Bahsoon [24] attempted to address in his study through the proposal of an “Arch

Options” model.

Evolution of software systems and the associated ability of the architecture to

support evolution was the key theme of [24] in which a “Arch Options” model was

proposed to address architectural stability in the face of changing requirements in an

evolutionary context. The “Arch Option” approach provided guidelines on eliciting the

likely changes in requirements and relating architectural decisions to value.

The “Arch Option” framework also accounted for the economic ramifications of

the change on the structural (e.g., maintainability) and behavioral (e.g., throughput)

qualities of an architecture and on relevant business goals (e.g., new market products). In

[24], Bahsoon acknowledges that the valuation of the architectural potential to the change

is a multi-perspective problem and attempts to tackle the problem by proposing a

valuation “point of view” framework for quantifying the options from different

perspectives. However their work stops short of identifying ways to manage the valuation

under this framework, such as identifying the dimensions, which are critical for

understanding architectural stability, prioritizing and weighting the valuation of these

dimensions, managing conflicts, and reconciling the options results. This is necessary to

provide a sound comprehensive valuation, which takes into account the various valuation

points of views. Consequently our proposed approach would embrace a “holistic”

approach towards uncertainty identification that would be utilized much earlier on in the

software investment process to manage and reduce uncertainties and we then employ

Dempster-Shafer Theory of Evidence based on subjective probabilities as a mechanism

to further refine our risk estimates associated with the uncertainties. (See Chapter 4 for a

detail discussion of the Dempster-Shafer Theory of Evidence.)

3. Managerial Perspective

Economic realities demand that organizations leverage their existing and future

software investments to create a competitive advantage, be it in an operational capacity or

support capacity to the war-fighter. More often than not, this involves the delicate art of

balancing operational needs which might be compounded with uncertainty with costs and

 23

schedule limitations. To accomplish this feat, decision making tools are needed and are

either created on an ad-hoc basis or well established decision-making aids utilized. We

examine two of the more popular techniques below

a. Decision Tree Analysis

Decision tree’s are popular decision support tool used as a visual and

analytical means for calculating conditional probabilities to help identify the strategy

most likely to produce the optimal solution goal.

Figure 5. Sample Decision Tree (From: [19]).

It is a chronological representation of the decision process [16] and

utilizes a network of nodes. It provides a prescriptive approach to decision-making by

allowing the decision maker to select exactly one alternative from a set of possible

decision alternatives in situations of uncertainty regarding the future. Nodes indicate

decision points, chance events, or branch terminals with the root node representing the

first set of decision alternatives. q represents the relative outcome probability, or

uncertainty, associated with each chance event.

b. Utility Theory

Utility theory is an attempt to infer subjective value, or utility, from

choices and it can be used in both decision making under risk (where the probabilities are

explicitly given) and in decision making under uncertainty (where the probabilities are

not explicitly given) [22]. With its philosophy based on the doctrine of utilitianism, its

underlying assumption is that the decision maker always chooses the alternative for

 24

which the expected value of the utility (EXPECTED utility) is maximum [18]. In other

words, expected utility could more precisely be called "probability-weighted utility

theory”. It involves the construction of a utility function based on assignment rules in

which a utility is assigned to each of the possible (and mutually exclusive) consequences

of every alternative, depending on the individual preferences of the decision maker.

While there are several methods for constructing utility functions, the best-known method

is based on indifference judgments of the decision maker about specially constructed

alternatives. Objective utility is the dominating approach in risk analysis, and the

common way to measure risk is to multiply "the probability of a risk with its severity, to

call that the expectation value, and to use this expectation value to compare risks” [21].

It is essential to observe that Decision-tree analysis (DTA) moves the

traditional Net Present Value analysis which we would be discussing in the next section,

one step forward by allowing the possibility of alternative states of nature. Furthermore,

expected utility maximization is only meaningful in comparisons between options in one

and the same decision, with some of the clearest violations of this basic requirement

found in risk analysis where expected utility calculations are often used for comparisons

between risk factors that are not options in one and the same decision (decision theory).

D. INVESTMENT VALUATION METHODS

Estimating the value of a software investment effort is a particularly challenging

task because there are many factors that affect the payoffs and costs of the investment

effort. While there are several techniques for valuation, valuation approaches could be

categorized into three mainstream approaches namely, the market approach, income

approach and the cost approach [14]. The market approach looks at comparable assets in

the market place and their corresponding prices and assumes that market forces will tend

to move the market price to an equilibrium level, the income approach looks at future

potential profit of the asset and attempts to quantify, forecast and discount these net free

cash flows to a present value, and the cost approach which examines the costs that would

be incurred if the asset under consideration were to replaced or created from scratch [14].

 In the field of finance, valuation is the process of estimating the market value of a

 25

financial asset or liability with the Capital Asset Pricing Model (CAPM) being the most

popular technique.

From the perspective of a software investment, valuation can be defined as the

process of estimating the present and future market value of software investment (asset).

However all these valuation approaches share one thing in common; they rely on the

Discounted Cash Flow (DCF) technique which continues to be the most popular

investment valuation techniques. We further expand on this technique in the next section.

1. Discounted Cash Flow (DCF) Model

The DCF method is an approach used to valuation, whereby projected future cash

flows are “discounted” at an interest rate or rate of return that reflects the perceived

riskiness of the cash flows. The DCF model has two complementary measures; Internal

Rate of Return (IRR) and Net Present Value (NPV), with the Net Present Value being the

single most widely tool used for large investments made by corporations.

Net Present Value (NPV) measures the excess or shortfall of cash flows, in

present value (PV) terms, basically a cost benefit analysis methodology and is simply

computed by subtracting costs from benefits, where benefits equal the sum of the present

value of future cash flows after taxes, discounted at some market risk-adjusted costs of

capital and costs equal the present value of investment costs discounted at the risk free

rate or reinvestment rate [14]. It is an indicator of the value an investment adds to a firm.

Decisions making under this concept are based on the sign of the cash flows. In financial

theory, if there is a choice between two mutually exclusive alternatives, the one yielding

the higher NPV should be selected [17]. The general formula for computing NPV is

given as follows:

NPV = 
 

t

t
t

t

r

C

1)1(
 - C0

where

t - the time of the cash flow

 26

N - the total time of the project

r - the discount rate (the rate of return that could be earned on an investment in the

 financial markets)

Ct - the net cash flow (the amount of cash) at time t (for educational purposes, C0 is

 commonly placed to role as the initial investment).

Table 2 below showcases the decision making criterion associated with NPV.

If... It means... Then...
NPV > 0 The investment would add value to the

firm
The project may be accepted

NPV < 0 The investment would subtract value
from the firm

The project should be rejected

NPV = 0 The investment would neither gain nor
lose value for the firm and does not
mean that the investment is expected
to break even.

We should be indifferent in the decision
whether to accept or reject the project. This
project adds no monetary value. Decision
should be based on other criteria, e.g.
strategic positioning or other factors not
explicitly included in the calculation.

Table 2. Net Present Value Decision Making Criteria (From: [17])

Despite the wide use of the NPV technique, it has one flaw – its inability to

explicitly account for managerial flexibility. Thus we explore the RO approach, which

takes into consideration a key concept: present day management flexibility to make

strategic decisions that have a long-term strategic impact, a concept that is noticeably

absent in other valuation methods such as Discounted Cash Flow (DCF) and Net Present

Value (NPV) [26].

E. REAL OPTIONS METHODOLOGY

The Real Options approach offers a means of capturing the flexibility of

management to address uncertainties as they are revealed. With its history and theory

embedded in financial theories, the key valuation concept of (financial) options theory is

that an option can be priced based on the construction of a portfolio of a specific number

of shares of an underlying asset, and that one can borrow against the shares at a riskless

rate to replicate the return of the option in a risk-neutral world [19]. An option gives its

 27

holder the right, without the obligation, to acquire or dispose of a risky asset at a set

strike price within a specified time period [27]. If the market conditions are favorable

before the option expires, the holder exercises this right, thus making a profit. Otherwise,

the holder lets the option expire. This asymmetric nature of options gives them real

economic value [27].

When extended to real assets, a Real Option could be defined as a systematic

approach and integrated solution using financial theory, economic analysis, management

science, decision sciences, and econometric modeling to valuing real physical assets, as

opposed to financial assets, in a dynamic and uncertain business environment where

business decisions are flexible in the context of strategic capital investment decision-

making, valuing investment opportunities and project capital expenditures [26]. In

essence a real option is a flexible arrangement that acknowledges the ability of

management to make decisions to counter against some unforeseen situations, in this case

being uncertainties in software engineering. However creating the options, acquiring the

options and managing the options over time and to realize the full potential value are

some of the challenges that need to be addressed.

The Real Options approach is able to overcome the limitations of traditional

valuation techniques by utilizing the best features of traditional approaches and extending

their capabilities under the auspices of managerial flexibility. In a real options view,

uncertainty is the randomness of outcomes from a software investment decision. Real

options are implicit or explicit capabilities created for real assets [28] that provide the

software manager with time-deferred and flexible choices (options) regarding future risks

or changes of the software and could explicitly address the issue of software investment

choices for future capabilities. It assumes that managers develop a level of foresight

sufficient to invest in resources/techniques and processes with ‘options’ characteristics

that provide implicit or explicit claims on future opportunities and generate flexibilities

for future investments or changes [28]. Through these capabilities, the software manager

may choose to adjust, reduce, increase, or abandon the investment in the future, thereby

stabilizing returns from these assets. In other words, it analyzes how software managers

can lay claim to future rent-generating capabilities through investment in options. The

 28

real options approach helps to structure the project as a sequence of managerial decisions

over time, clarifies the role of uncertainty in project evaluation and allows us to apply

models that have been developed for valuing stock options to project investments [20]

(Bodie and Merton 1999), and our study seeks to develop a RO framework to explicitly

estimate risk using Dempster-Shafer Theory of Evidence and Dempster’s rule of

combination to guide the decision making process. Using the options logic necessarily

entails a rigorous analysis of the software investment, their uncertainties, and costs of

creating the options, all of which contribute towards a greater understanding of the

strategic role for the software. We shall begin the formulation of our framework by

visiting and addressing the issue of uncertainty in the next chapter.

 29

III. ADDRESSING UNCERTAINTY

As we know, there are known known’s; there are things we know we
know. We also know there are known unknowns; that is to say we know
there are some things we do not know. But there are also unknown
unknowns––the ones we don't know we don't know.

 (Donald H. Rumsfield, Secretary of Defense, 2002)

A. INTRODUCTION

Uncertainties permeate virtually every phase of the software investment process

from procurement decision-making, requirements specification, software development

and implementation, to the eventual evolution of the software. This sentiment is best

echoed by Ziv’s uncertainty principle of software engineering in which he posits that

uncertainty is inherent and inevitable in software development processes and products.

These uncertainties usually present themselves in various forms ranging from

changing/incomplete requirements, insufficient knowledge of the problem domain to

decisions related to the future growth or evolution of the software. As identified earlier

on in Chapter I, the presence of uncertainty is one of the pre-conditions necessary for the

application of Real Options (RO). In this chapter, we attempt to capture the uncertainties

that appear in the software investment process and how they impact decisions associated

with software investments.

First, it is important to understand what the term “uncertainty” means. The word

‘uncertainty’ as derived from Webster’s dictionary defines uncertainty as a situation

where:

The current knowledge available may range from falling short of certainty
to an almost complete lack of conviction or knowledge especially about
the outcome or result.

When translated literally, the key phrase “may range from falling short of

certainty to an almost…” hints at some element of probability and insinuates the presence

of some degree of risk, which is either introduced or mitigated within the context of

 30

uncertainty. Software engineering, regardless of process, programming language, or

domain, involves significant decision making on the part of the software manager due to

the myriad of activities involved in the software engineering process and the uncertainties

that surround these activities. The driving force of the uncertainty of future software

evolution to meet either future organizational needs or operational challenges also

increases the degree of uncertainty associated with the software investment decision

making process. As a result, uncertainty introduces and drives risk. We must however

emphasize that uncertainty should not be confused with risk as there is an important

distinction between the two. Risk is something one bears and is the outcome of

uncertainty, as uncertainty is either resolved through the passage of action or left

unattended due to inaction [14]. The risks associated with the acquisition of the software

need to be identified and analyzed very early on in the decision-making process, and an

approach to mitigate the high-priority risks must be incorporated into a software

acquisition plan. Therefore, the responsibility lies with the software manager to identify,

manage and eliminate the sources of uncertainty by developing a risk management plan

so as to identify risks at the earliest possible time, adjust the acquisition strategy to

manage high-priority risks, and implement a risk management process to manage risks

throughout the acquisition life cycle [40].

B. CATEGORIZATION OF UNCERTAINTIES

In addressing the issue of uncertainty, we focus on uncertainty from three points

of view: the uncertainties associated with the software investment decision-making

process, uncertainties with the software engineering process and uncertainties associated

with the software product itself.

Figure 6. Taxonomy of Uncertainty (From: [29]). Classification of
uncertainty into epistemic (reducible) and aleatoric (irreducible).

 31

According to the scientific body of knowledge on uncertainty in aeronautics and

astronautics, uncertainties exhibit themselves in either of two forms as depicted in Figure

6 on the previous page. Epistemic uncertainties are considered to be reducible

uncertainties while aleatoric uncertainties are considered to be irreducible uncertainties.

While epistemic uncertainty deals with our lack of knowledge, lack of information and

our own and others’ subjectivity concerning an issue, aleatoric uncertainties, on the other

hand, deals with the randomness (or predictability) of an event due to variability of input

or model parameters when the characterization of the variability is available [29]. In other

words, an aleatoric uncertainty is an inherent variation associated with the physical

system or the environment. Both epistemic and aleotoric uncertainties are interwoven and

form the general framework which uncertainties fall into and also form the framework

from which we would be addressing uncertainty in this study.

C. INVESTMENT DECISION MAKING UNCERTAINTIES

Several factors drive uncertainties in the software investment decision making

process. To determine these uncertainties, we first identify the pertinent activities leading

to and associated with a software investment effort and establish an overarching

framework. The three major activities as identified in Figure 7 below are the software

Figure 7. Software Investment Process.

 32

investment decision-making activity during which a decision is made to procure a

software system, the associated development activities of the software and

implementation related activities.

The overwhelming uncertainty surrounding the software investment decision-

making activity is determining what the scope of the acquisition effort would be, the

costs and determining the most appropriate acquisition strategy. Possible acquisition

strategies range from purchasing the desired capability outright from commercial vendors

and then customizing it to suit the customer’s needs, building a custom solution from

scratch, or employing a “hybrid” approach that includes a combination of both custom

development and purchasing of the components from commercial vendors. These are

examples of Real Options strategic paths, that is, options to undertake different courses of

action (analysis of alternatives). Under normal conditions, the investment decision-

making activity phase is initiated upon the conclusion of an “operational needs”

assessment to justify the needs for investing in the capability by the using organization

(Army, Navy, Air Force, and so forth).

Figure 8. Key Software Investment Decision Making Activities. Investment
decision making activities include choosing between a “Build”, “Buy”

or “Hybrid” acquisition strategy each of which has uncertainties
associated with them which could either be epistemic or aleotoric in

nature.

 33

In the case that the operational need is conceptual in nature, trade studies should

be conducted to either prove or demonstrate the concept before an investment decision is

made and before funds are committed to the effort. The typical “high level decisions”

associated with the investment decision making activity are depicted in Figure 8 above.

The investment decision making activity drives the development phase, which

centers on the technical activities associated with developing the solution to meet the

operational need once an investment decision is made and an acquisition strategy

selected. This leads to the implementation activities phase whose end result centers on the

delivery and fielding of the software as well as supporting the maintenance and possible

evolution of the software. In this study, we limit our focus to studying the uncertainties

associated only with the investment decision making process due to our belief that

uncertainties associated with the investment decision-making activity drives the overall

success of the acquisition program, hence the need to address the uncertainties early on in

the investment process. We now proceed with developing an in-depth methodology for

identifying and addressing uncertainty early on in the software investment process

through an uncertainty elicitation phase.

D. UNCERTAINTY ELICITATION

Just as a formal requirements elicitation phase exists in traditional software

engineering processes, we propose the introduction of a formal and distinct “uncertainty

elicitation” phase as part of the software investment decision-making process. This phase

would not include members of a typical requirements team, but would work in tandem

with them, to play the “devils advocate” by identifying and documenting uncertainties as

they are revealed in the forces driving the need for the software, the acquisition strategy

and its ultimate implementation. Implementing an uncertainty elicitation phase would

facilitate the identification of uncertainties very early in the acquisition process, and steps

could be taken to either refine the requirements to address the uncertainties or strategic

options identified to mitigate the risks posed by the uncertainties. In Figure 9, we expand

on the “Software Investment Decision” component of Figure 7 and propose a

 34

methodology that could be used to capture and address uncertainties at the inception of a

software-related capital investment through the introduction of an explicit step to allow

for uncertainty elicitation.

Figure 9. Uncertainty Elicitation. The “usable requirements” are elicited at
a very high level and could help guide the investment decision making

or selection of an appropriate acquisition strategy.

Once all these activities have been accomplished and a decision is made to

proceed with the software investment effort, we now proceed to the development

activities phase and attempt to develop an in-depth methodology for uncertainty

identification in the remainder of this chapter. Development activities center on all the

tasks and activities that are associated with developing the software product. Uncertainty

appears in various phases during the development process and we attempt to identify and

address them.

 35

E. SOFTWARE ENGINEERING UNCERTAINTIES

As software engineering uncertainties are present at all stages of the software life

cycle, these uncertainties which are treated implicitly should be handled explicitly by

developing a proactive strategy to either mitigate or hedge against the uncertainty. The

challenge remains on how to identify and capture uncertainties explicitly, reason in the

face of uncertainties (analysis, trade-offs) and ultimately manage the uncertainties.

Accordingly, Lehman’s proposal of the basic uncertainty principle of computer

application [41], which stipulates that the outcome in the real world of software system

operation is inherently uncertain with the precise area of uncertainty not knowable,

clearly highlights the inherent difficulties of addressing uncertainty. The extent to which

a degree of satisfaction is reached that the operational system meets its intended

requirements is ultimately determined by the software professionals’ judgment, action,

and inaction. Thus, neither developers nor users can fully know system properties,

therefore solving these problems in the face of these uncertainties to produce solutions

that satisfy, in spite of not knowing what it is that they satisfy, is the heart and essence of

software engineering [41].

These uncertainties have given rise to risk and decision analysis methodologies

and paradigms, such as modeling and simulation to model the unknown and delaying

certain decisions for as long as possible, that are targeted at reducing epistemic

uncertainties by increasing one’s knowledge of the problem at hand. Since the epistemic

uncertainties facilitate the introduction of aleatoric uncertainties in the end product, an

approach is needed to vastly reduce epistemic uncertainties in order to reduce the

corresponding aleatoric uncertainties which are propagated in the software engineering

effort.

In an attempt to provide clarity, we revisit the definition of software engineering,

which we loosely define as the “the set of activities leading to the development of a

software product.” We categorize these activities into two interwoven but distinct phases

to further highlight and delineate the uncertainties which arise in each of the two phases:

The first phase is the "program management” phase and the second phase is the

 36

“technical” phase. The activities in the first phase are heavily slanted toward managerial

activities which involve significant decision making on the part of the software program

manager regarding the technical activities surrounding the software development effort.

We highlight the development activities in Figure 10.

Figure 10. Development Activities & Software Engineering Activities.

F. MANAGERIAL PERSPECTIVE

The managerial phase serves to provide program management guidance to ensure

the software product is developed within cost and scheduled constraints. From a

managerial perspective, the five major constraints of people, time, functionality, budget,

and resources (excluding people) [39] form the basis of the uncertainties which plague

the software program manager. These five constraints could be summed up into two

major uncertainties, cost estimation and scheduling uncertainties (Figure 11).

 37

Figure 11. Managerial Activities.

The variables of cost, time, and functionality (scope) are intrinsically linked in the

managerial activities centered around cost and schedule estimation. When time and cost

are the essence of a project, then functionality becomes defined and is no longer a

variable while on the other hand if functionality is defined, then cost and time are

defined. Therefore if any one of these points becomes fixed, the other two points become

controlled [42]. Maintaining a perfect balance between these three variables would lead

to more accurate estimate and reduce the likelihood of cost overruns.

1. Cost Estimation

The accurate prediction of software development costs is a critical issue during

the acquisition decision-making process. Cost estimation uncertainties arise due to the

intricacies involved in determining the complexity, amount of work (size) and associated

costs. Statistically speaking, escalations in the dominant cost of ‘labor’ have led to

spiraling project costs as project scope and schedule escalates resulting in outright

cancellations and budget overruns. Productivity of the team can also be difficult to

predict. For example, in previous research, the case of employee productivity has been

likened to that of returns on financial stock because productivity may vary by orders of

magnitude, a situation which is analogous to the theory of financial instruments, where

 38

empirical evidence suggests that the root cause of uncertainty is variance in the return

rates, not in the base stock values [34].

Figure 12. Cone of Uncertainty (From: [37]). The horizontal axis contains
common project milestones such as Initial Concept, Approved Product
Definition, Requirements Complete while the vertical axis contains the

degree of error that has been found in estimates created by skilled
estimators at various points in the project.

While there are several software cost estimation methods available such as

algorithmic methods, top-down method, and bottom-up method, to name a few, no one

method is necessarily better or worse than the other and more often than not the strengths

and weaknesses of the estimation methodologies are often complimentary to each other.

Therefore to mitigate these uncertainties, an accurate estimation of a variable

phenomenon must include the variability in the phenomenon itself. In other words, costs

should be determined for uncertainties within an estimate, hence our proposed Real

Options approach. The variability in these factors contributes to the variability of project

estimates and as these sources of variability are further investigated and pinned down, the

variability in the project diminishes, thereby diminishing the variability in the project

estimates [37].

 39

This phenomenon otherwise known as the “Cone of Uncertainty” and is best

illustrated as depicted in the Figure 12 above. Since uncertainty-reducing decisions are

usually not yet applied at the beginning of a project, the cone is always wider at the

beginning of a project. The cone begins to narrow as uncertainty-reducing decisions are

implemented. The optimal desired scenario for the project manager is to make the cone as

narrow as quickly by applying uncertainty-reducing strategies which produced the

desired outcome. This would require a disciplined and comprehensive approach of

assessing and the cost estimation uncertainties and determining the project risk factors. In

the case that certain costs are unknown, a justifiable cost should be included in the form

of a contingency amount.

2. Scheduling

The scheduling activity is inextricably tied to the project’s technical baseline and

is essential to developing a cost estimate for the overall effort. It usually starts with the

development of a work breakdown structure (WBS) which represents a hierarchical set of

independent tasks with the precedence relationship that exists among tasks defined. Input

from the cost estimation phase is usually required in the WBS and the final product is

presented in the form of precedence networks and Gantt charts in which the critical path

is identified.

Techniques such as the PERT model (Program Evaluation and Review

Technique) were developed to address uncertainty in the estimation of project

parameters. However, the main problem with PERT is that it gives accurate results only

if there is a single dominant path through a precedence network [38]. In order to deal

with an uncertain environment it is necessary to consider setting and employing a

certainty threshold before a project is started, and ensure that it is monitored throughout

the execution lifetime of the software project and rescheduling is performed if the

certainty threshold is breached [35]. In situations where a single path is not dominant,

PERT usually provides overly optimistic results hence the need for a Monte Carlo risk

simulation approach, which would repeatedly sets values for each random variable by

sampling from each variable’s statistical distribution [38]. The variables can be task

 40

duration, cost, start and finish time which are used to compute the quantities such as the

critical path, slack time etc. However the Monte Carlo simulations for software

development also does not provide accurate estimates of project parameters (duration,

finish time, cost, etc.) due to the greater uncertainties related to requirements, tools,

resources, budget, etc. compared to many other industries [38]. This has led to the

proposal of different approaches to project scheduling with uncertainties such as the

application of the theory of constraints (TOC) [38] to project management which

employs the concept of project buffers to which we frame as “Options” to accurately

support project scheduling activities.

Figure 13. Scheduling Process. (From: [35])

The project buffers or “Options” would be based on the identification, analysis

and quantification of the risks posed by the uncertainties and in the event that sufficient

information is not available, a "worst-case" analysis may be utilized. The amount of

allowance provided by the buffer would be based on assessing the degree risk posed by

the uncertainty associated with all remaining project activities.

G. TECHNICAL PERSPECTIVE

The second phase in the software capital investment process is heavily slanted

towards “technical” activities and is concerned with all the technical activities needed to

develop the software product itself. The uncertainties which are typical of this phase

include uncertainties associated with requirements analysis, transition from system

 41

requirements to design and code, uncertainties in software re-engineering and software

reuse, and uncertainties in operating the software product itself. For example, taking the

case of software quality attributes such as performance and maintainability, which cannot

be directly measured until after the fact (after the software has been fielded), the activities

associated with enhancing these quality attributes cannot be estimated or measured

during the development process. Such concerns therefore consequently introduce

aleatoric uncertainties in the software product. Technical uncertainties can be categorized

into the four major activities of specification, design/implementation, validation, and

evolution activities as identified in [1], all of which are carried out regardless of the

acquisition strategy selected, i.e., build vs. buy, as even commercial off-the-shelf (COTS)

products need to be tailored and customized using these activities to meet the customers

needs.

Figure 14. Technical Activities.

1. Software Specification

The Software Specification phase is typically the first phase in any acquisition

process once a software need has been identified. Requirements are elicited through

various mechanisms and a software requirements specification is generated. The key

underlying uncertainty facing the software specification activity is the probability of

being faced with incomplete, unknown or changing requirements. More often than not,

these changes are proposed once the software is already in operational use, as users begin

to see better ways to perform existing functionality or because there is a mismatch in

performance expectations. This scenario highlights the realities of the challenges facing

software specification and exemplifies “Humphrey's Requirements Uncertainty

 42

Principle” which posits that for any new software system, the requirements will not be

completely known until after the users have used it. The prudent manager would ensure

that to the extent possible, the requirements developed in this phase are testable amongst

other things.

2. Software Design and Implementation

The software design and implementation phase usually follows the software

specification phase. The tasks which are inherent to this activity are architectural design,

detailed design and program design as depicted in the Figure 15. This phase involves the

initial development of high-level software architecture which is continuously modified

until the requirements are completely refined. A detailed design is generated from the

high level architecture and the activities of coding, integration, and testing are carried out

during this phase. Uncertainties in this phase are usually a propagation of the

uncertainties in the software specification phase and manifest themselves in the software

design. While recent empirical studies of software development under realistic conditions

has lead to the introduction of several agile development process such as eXtreme

Programming (XP) and SCRUM which promote development iterations, open

collaboration with the customers, and adaptability throughout the life-cycle of the project

in response to both Humphrey’s and Ziv’s uncertainty principles, to help address

software engineering uncertainties, these approaches in our opinion do not adequately

address the challenges posed in this phase as we believe agile approaches by virtue of its

definition is somewhat more of a “reactive” approach to software development than

proactive approach because of the elimination of what is perceived to be wasteful, yet

necessary activities associated with traditional software development processes. Also

while beneficial we are of the opinion that caution must be exercised when employing

agile methods, especially in organizations that do not embrace certain standards of

discipline that are associated with an engineering discipline (i.e. documentation,

configuration management etc.) in order to preserve the integrity of the relatively young

profession of software engineering as a traditional engineering discipline. Furthermore

while modern concepts such as posteriori reuse (design for planned reuse) are

 43

increasingly becoming widely advocated standards in which software artifacts are created

with reuse in mind with the goal of improving productivity, quality, time-to-market and

long-term cost, this concept is still evolving in the software engineering community.

Figure 15. Software Design and Implementation Process (From: [36]).

Uncertainties in the software design process can be presented along the

dimensions of two major points of view; the developer’s point of view and the customer’s

point of view. From a developer's point of view, design decisions should be evaluated as

early as possible in the software development life cycle, and key requirements, both

functional and non-functional requirements, must be fully addressed during the

architectural design phase. It is not acceptable to proceed through detailed design and

implementation phases only to discover that the decisions made early in the process, at

the architectural level, did not turn out to promote the desired functionality to be achieved

[30].

From a customer's point of view, there are two options towards achieving their

solution; building a component or buying the needed component. The developers’

concerns identified above would apply in both scenarios (build vs. buy) even in the case

that a solution needs to be bought, because the customer is faced with the challenge of

procuring a software component that it is capable of meeting its requirements straight out

Architectural
Design

(Functional
Design)

Detailed
Design
(System
Design)

Functional Structure
User Interfaces

System Inputs/Outputs
Logical Model
Data Dictionary

Design Specifications
Program Specifications

Programming
Standards

Physical Model
Draft Test Plans

Software
Units/Modules

Final Test Plans
User Documentation

Programmer Reference
Installation Plan

Training Plan

Program
Design

Requirements Integration and
Test

 44

of the box (which is rare) or with some customization, particularly with respect to their

long-term needs and the system's response to change.

While meeting current requirements is definitely a focus of both points of view,

future evolution serves as the driving mechanism on which decision would be based,

hence the need for a decision-making framework to mitigate theses uncertainties.

However, before the Real Options approach can be employed, the factors which would

guide the decision-making process or evaluation process need to be assessed. These

factors are realized by identifying and quantifying the uncertainties that appear in

software design.

Software design situations are characterized by complexity and uncertainty with

complexity representing the amount of relevant information that is available in a given

situation and uncertainty representing the availability and reliability of the information

that is relevant in a given situation [43]. Consequently, effective approaches to software

design would require a closer look at complexity and uncertainty as important

characteristics of a situation and embrace a set of simple concepts for relating situational

characteristics to different approaches to reduce both complexity and uncertainties in

software design. While techniques such as abstraction and decomposition are commonly

employed to deal with the complexity associated with software design in specifications,

approached based on prototyping have emerged as means to cope with software design

uncertainty [44].

Previous research into software design approaches led to the proposition of the

Principle of Limited Reduction [44] which concluded that software engineers should rely

on mixed approaches to software design in order to effectively cope with both complexity

and uncertainty because it is almost impossible to hope to reduce complexity without

adversely increasing uncertainty and vice-versa.

3. Software Validation

The software validation activity serves to increase the degree of confidence in a

software product by determining if the software product which is being delivered is the

right software. It is normally preceded by verification activities aimed at ensuring the

 45

software product is designed to deliver all functionality to the customer and typically

involves reviews and meetings to evaluate documents, plans, code, requirements and

specifications.

As is the case with the software design and implementation phase, uncertainties

which surround this activity are due to the ripple effect associated with software

specifications and the inability to guarantee a defect free product during the testing

process. While verification serves to verify the correctness of the software product,

validation ensures that functionality, as defined in the requirements, is the intended

behavior of the product and typically involves actual testing of the software product and

takes place after verifications are completed. The validation phase serves as a quality

assurance procedure in which processes are designed to ensure that software product

meets its intended use and the validation activities are usually undertaken both during, as

well as at the end of the software development life cycle to ensure that all requirements

have been fulfilled. However due to the potential ripple effect associated with software

specification uncertainties, this activity has the potential of being plagued by the

“garbage-in, garbage out” syndrome.

4. Software Evolution

In general, the software evolution activity addresses the change associated not

only with the software systems, but also with the case tools and the development

processes used to support software engineering activities in order for the software system

to remain relevant in terms of its use. In Lehman’s view, software evolution is “intrinsic”

and not primarily due to shortsightedness of developers or users, but rather is due to the

fact that software it is a man-made product which continuously evolves and the rate of

evolution of a used software system will far exceed the rate of evolution of a biological or

physical system, because the fundamental laws of biological and physical systems do not

change, while the laws of software, being entirely man-made and malleable, can be and

are changed at a moment’s notice [41].

In our view, software requirements are the driving mechanism through which

uncertainty is introduced into the technical phase of software capital investments, with

 46

uncertainties in current requirements and future requirements playing a key role. In

Lehman’s work on software evolution, he classifies software systems into three major

categories; S, P and E systems based on system correctness levels which are correlated to

the three major sources of uncertainty which arise in the software engineering process:

Gödel-like, Heisenberg-type and Pragmatic uncertainties. These three types of

uncertainties could be interpreted as uncertainties in the problem domain, uncertainties in

the solutions domain and uncertainties in human participation respectively. We expand

on these uncertainties in the next section.

H. TYPES OF SOFTWARE ENGINEERING UNCERTAINTIES

Gödel-like uncertainties occur when the properties of a program cannot be known

from the representation, because the software systems and their specifications are abstract

models of the real world. Heisenberg-type uncertainties occur as the system is being

developed and grows during use and exhibit themselves in the form of changing

requirements either due to unsatisfactory behavior post implementation or because of the

emergence of new requirements while pragmatic uncertainties are problems in actually

performing the development activities.

In the case of Gödel-like uncertainties, we believe that since a model is only an

abstract representation of reality and as such in most cases does not offer the level of

detail that is desired, modeling and simulations techniques when properly employed,

serves as a cost saving mechanism through which various events/scenarios could be

modeled in a controlled environment before actual implementation. Furthermore this

could serve as a “proof of concept” in the form of a prototype, although even though it

might help reduce some uncertainties, from a cost perspective, the uncertainty of system

properties might still persist.

Changing requirements are a normal occurrence in software development efforts.

Therefore the challenge facing the software manager trying to deal effectively with

Heisenberg-type uncertainties is two fold: how to accurately manage the changing

requirements and how to avoid sunk costs as a result of an un-useable product due to

incorrect or new requirements.

 47

Table 3. Summary of Software Engineering Uncertainties.

This also introduces the challenge on how to accurately reflect or account for this

uncertainty in the cost and schedule thereby contributing or introducing Pragmatic

uncertainties ranging from funding problems, market conditions to employee related

issues which could all impact the software development effort.

In Table 3, we have attempted to highlight the three categories of the uncertainty

and identify sources of uncertainty associated with each category.

We use a hypothetical example to further illustrate these uncertainties in the

scenario of developing a software application for the space shuttle. If the space shuttle is

designed to travel to the moon and back, what are the uncertainties facing this effort and

what kind of options would the software manager want to consider when designing this

software?

 48

Figure 16. Sample Space Shuttle “Real Options”.

A forward-thinking manager would identify future use of the space shuttle

software as an uncertainty by thinking evolution, evolution, evolution! In this scenario,

s/he would design the space shuttle software with evolution in mind and would attempt to

determine the extent of evolution depending on the scenarios that he/she could come up

with. For example, the software manager might want to make an investment in a robust

architecture that could support a plug and play navigational system in case NASA

decides to use the space shuttle to visit Pluto in the future so that only one component is

changed (navigational software module). This forward thinking definitely requires some

creativity and intuition on the part of the project manager. Figure 16 showcases these

uncertainties and sample Real Options that can be used to manage them.

The most likely scenarios would then be prioritized and categorized into

uncertainties and options developed and analyzed appropriately to counter the

uncertainties. Thus, the essence of employing a Real Options approach based to the

 49

potential evolution of the software requires the enhancement of traditional requirements

engineering processes to allow for the creative forecasting of future requirements and

development of the appropriate options to allow for future evolution even if their might

be technology maturation concerns.

I. MANAGING SOFTWARE ENGINEERING UNCERTAINTIES

In an attempt to manage software engineering uncertainties, we capture the

uncertainties from both a managerial and technical perspective in our Uncertainty

Elicitation Model and visually depict the contributing factors in Figures 17 and 18 in

what we call the “2 T’s” of software engineering uncertainty. (Given that our depiction

resembles the capital letter “T”.)

Figure 17. Software Engineering Management Uncertainties. Managerial
Uncertainties of people, time, functionality, budget, and resources
contribute to both estimation and schedule uncertainties which are

considered to be pragmatic uncertainties.

 50

Figure 18. Software Engineering Technical Uncertainties. Technical
uncertainties of incomplete requirements, ambitious, ambiguous,

changing/unstable requirements contribute to software specification
uncertainties, which leads to software design and implementation,

software validation and software evolution uncertainties all of which
can be categorized as exhibiting both Heisenberg- type and Gödel-like

uncertainties.

The “2T” approach would serve as the basis on which uncertainties are elicited

during the elicitation phase as proposed in our Uncertainty Elicitation Model. An

expanded view of the model is depicted in Figure 19.

 51

Figure 19. Expanded View of Uncertainty Elicitation Model.

Given all the uncertainties that appear in software engineering, one must try to

reduce and/or eliminate the uncertainties to enable a more accurate end result in the

software investment process. Hence, we need a quantification mechanism to quantify

these uncertainties as risks with the goal being to assign an appropriate mathematical

model to a real-world situation with respect to objective and subjective uncertainty [32].

While there are several mathematical theories that describe uncertainty and provide its

measures such as probability, possibility and evidence theory, probability theory and

possibility theory are best suited for describing aleatoric uncertainty and epistemic

uncertainty respectively. Evidence theory, on the other hand, is well suited to handle both

types of uncertainty because it does not require the separation of the two types of

uncertainties due to its unique ability to represent the degree of belief (confidence) that

may be attributed to a given proposition on the basis of given evidence, and its ability to

combine evidence from different sources (Dempster’s rule) [31]. Consequently, as the

next step in our analysis we propose characterizing both the management and technical

 52

uncertainties as depicted in Figure 20 by modeling the uncertainties within a single model

developed based on the logic of evidence theory so as to further delineate between

aleotoric and epistemic uncertainties, determine the uncertainties that could be reduced,

understand the dependence between events and act accordingly by developing Real

Options to mitigate the risks perpetrated by the uncertainties.

Figure 20. Modeling Software Engineering Uncertainties.
Both the Managerial and Technical uncertainties are fed into a risk model and epistemic

and aleotoric uncertainties characterized from the inputs

Up to this point, we have succeeded in proposing a methodology for eliciting

both the managerial and technical uncertainties surrounding a software-related capital

investment. Once we have captured all the possible uncertainties, we determine the risk

which these uncertainties present and characterize the risk as a measure of volatility on

the software investment effort so that the appropriate options can be developed to hedge

against the risk.

From a Real Options perspective, uncertainty is the randomness of outcomes from

a software investment decision. Real Options are implicit or explicit capabilities created

for “real assets” that provide the software manager with time-deferred and flexible

 53

choices (options) regarding future changes of the software [28]. Real Options theory

explicitly addresses the concerns of software investment choices for future capabilities. It

assumes that managers develop a level of foresight sufficient to invest in

resources/techniques and processes with ‘options’ characteristics that provide implicit or

explicit claims on future opportunities and generate flexibilities for future investments or

changes [28]. Through these capabilities, the software manager may choose to adjust,

reduce, increase, or abandon the investment in the future, thereby stabilizing returns from

these assets.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

IV. ESTIMATING VOLATILITY

A. INTRODUCTION

In the previous chapter we addressed the issue of uncertainty and follow up in this

chapter by introducing a methodology for estimating volatility as we continue to develop

our Real Options (RO) framework. As previously discussed in this study, uncertainty

implies risk, and consequently, uncertainty must be duly quantified as a risk factor to

gauge the magnitude of its impact on the underlying asset. The process of translating or

equating software engineering uncertainties into a quantifiable property begins with the

quantification of the identified uncertainties, computing the impact of uncertainties and

ultimately developing a risk analysis framework in which the associated risks are

identified, predicted and modeled using simulation and the results analyzed. This

approach is representative of the current approach to risk management. However in our

study, we seek to proceed beyond the conventional paradigm of risk analysis by explicitly

utilizing Dempster-Shafer Theory of Evidence (DST) to reduce both aleotoric and

epistemic uncertainties by using subjective probability estimates to refine our objective

estimate thereby further acknowledging the flexibility of software manager to make

decisions to incorporate Real Options to mitigate and hedge against risk.

We specifically choose to use the DST approach because it accounts for

ignorance, a key strength and value added capability to our analysis since software

engineering is unique in that there are several different software development approaches

and processes without any standardization across the industry. Therefore it is our belief

that DST when applied, could address the issue of ignorance or “unknown unknowns” in

our probability estimates which otherwise reflect “known unknowns” such as in

situations where it is not immediately clear from the historical data as to the type of

software development approach that was utilized in sample historical projects (e.g.,

Rational Unified Process, Evolutionary Approach, Component Based Software

 56

Engineering). Our subjective probability estimate based on DST would help establish a

confidence interval on the key objective probability estimates to consequently reduce

uncertainty.

B. RISK OVERVIEW

From a Real Options perspective, estimating volatility as a risk measure

represents the most challenging task associated with the application of Real Options.

Software risk can be broadly defined as a measure of the likelihood and loss of an

unsatisfactory outcome affecting the software project, process and product. Risk can be

captured in different dimensions and it could be estimated in terms of the volatility of the

returns on the underlying asset or the degree of uncertainty about the future value of the

opportunity. In general the risks associated with software-related capital investments

can be analyzed in one of two possible ways: an objective approach, which is quantitative

in nature in which risks are analyzed by calculating the probability of their occurrence

and impact on the investment effort under consideration and a subjective approach which

is qualitative in nature and is based on an experts opinion, intuition, assessment based on

degrees of possibility about the risks rather than the reliance of historical experiences.

In general, there are nine major theories in decision making that guide risk

management. These theories are Bayes theorem, Chaos theory, Creativity theory,

Decision theory, Game theory, Portfolio theory, Probability theory, Uncertainty theory

and Utility theory. Bayes theorem addresses the dynamic nature of risk by providing a

method to alter judgment as events unfold, Chaos theory posits that chaos and

uncertainties are market opportunities which must exploited, Creativity theory allows us

to use our knowledge and imagination to develop ideas that are either original or novel,

Decision theory uses probabilities to determine outcomes in complex problems, Game

theory uses heuristics to determine which alternatives to explore in large search spaces,

Portfolio theory utilizes the concept of diversification to reduce risk, Probability theory

uses probability estimates to determine the degrees of certainty and forecast an outcome,

 57

Uncertainty theory uses probability to model unknown, uncertain or subjective decision

problems, and finally Utility theory, which models preferences towards risk by selecting

the alternatives that maximizes the expected utility function [45].

Evidence theory on the other hand, otherwise known as Dempster-Shafer Theory

of Evidence, which we utilize in our methodology, originated from Bayes Theorem of

probability analysis. It has its strengths in its ability to represent and combine different

types of evidence obtained from multiple sources. However, it requires the satisfaction of

two constraints, the first being the independence of the sources of information and

secondly the handling of conflicting evidence. We will expand on our methodology using

DST later on in this chapter, but first we revisit the issues of risk estimation.

1. Software Investments Risks Estimation

Based on the uncertainties we identified using our “2T” approach proposed in our

Uncertainty Elicitation Model (Figure 19) in the previous chapter, we now attempt to

determine and quantify the risks posed by these uncertainties. We examine the risk of

requirements changes (technical activity), cost and schedule overruns (managerial

activity) based on the uncertainties identified as well as the impact these risks pose to the

relative future value of the software investment effort. We use the term “relative future

value” because the future value of government investments is not easily quantifiable. We

further expand on this in the next chapter. These risks are then modeled using a Monte

Carlo simulation to determine the volatility of the software investment effort.

2. Requirements Risk Estimation

Based on our research thus far we can safely assert that both Gödel-like

uncertainties and Heisenberg-type uncertainties associated with software related capital

investments are key drivers of pragmatic uncertainties. We put emphasis on the word

“key” because there are other external contributing factors that also contribute to

pragmatic uncertainties. However, Heisenberg-type uncertainties, specifically

requirements issues serve as the key initiator of the uncertainties associated with software

related capital investments and requirements volatility and inadequate requirements have

 58

a significant impact on either the success or failure of the software investment effort.

Typical changes might involve changes in functional, level of service (interoperability,

performance), design constraints, quality attributes, and interface requirements amongst

others. Furthermore, technological breakthroughs or unanticipated advancements in the

software industry while development is underway or future evolution of the software

product could also contribute to requirements changes.

Ever changing requirements continues to impact software investment efforts, and

more often than not, it forces managers to choose between requirements, i.e., which

requirements to accept and which requirements to reject with the full understanding that

ignoring changes in requirements has the consequence of the delivered product failing to

meet the customers needs while accepting changes in requirements has the potential of

impacting costs and schedule. Furthermore, changes in requirements while a software

investment effort is underway also poses the risk of introducing unwanted, unanticipated

or unknown impact on existing requirements, not to mention the associated costs and

scheduled delays depending on the phase of the investment or software development

process experiencing significant requirements changes. While the standard practice has

been to “freeze” requirements prior to the commencement of any development activities,

more often than not, this does not work and is also not representational of the DoD

doctrine to support the flexible development and rapid delivery of products to meet the

war-fighters needs in an ever changing environment in response to operational needs.

Therefore in order to accurately estimate requirements volatility and its impact on

the future value of a software-related capital investment, not only must the risk of

requirements changes be quantified, it must also be specifically predicted and quantified

based on the phase in the software development process in which the changes are more

likely to occur. Hence the need of an approach that would explicitly acknowledge not

only the probability of occurrence based on previous objective estimates, but also the

possibility of occurrence based on subject expert opinions (Delphi Method) that

acknowledges either the degree of belief or ignorance in the objective probability

estimates which we attempt to address using the DST approach.

 59

3. Schedule Risk Elicitation

In general software engineering scheduling risks could be addressed either from a

development standpoint or delivery standpoint, although the development schedule

ultimately drives the delivery schedule. While the decision variables which typical drive

the scheduling activity could be either managerial or technical in nature, we posit that

technical issues present the most risk because managerial risks could easily be controlled.

Specifically the decision variable of requirements changes in the form of requirements

increases or reductions has the unintended consequence of impacting the software

delivery schedule by either pushing the delivery date out by months and in some case

years past the anticipated delivery date or shortening the delivery schedule in response to

either operational needs, cost constraints, or as a result of risk mitigation. This dilemma is

further highlighted in Figure 21 below which showcases the difference between the

anticipated delivery date of a product and the actual delivery date of a software product

as the size of the software product increased due to requirements changes.

Figure 21. Differences Between Planned and Actual Software Schedules
(From: [38]).

Therefore in order to hedge against the uncertainty of requirements changes,

better and flexible estimation techniques which account for the changes in requirements

 60

need to be developed, although schedule estimation is beyond the scope of our study. In

our study, we assume the schedule estimation techniques are sufficient enough for us to

provide initial schedule estimates which we can then refine, by addressing the uncertainty

that was factored into the cost estimation using our DST methodology.

4. Cost Estimation Risk Elicitation

Initial estimation of the costs of the software investment effort is a critical

component of the software investment process as it provides a basis for justifying the

investment effort. This estimate must not only account for all the normal tasks and

activities which needs to be accomplished during the whole investment effort, but must

take into consideration other factors to include requirements volatility, time for resolving

defects time associated with “spin up” during contract re-competes and possible litigation

if several contractors are involved as is the case with several DoD acquisition programs

to name a few. Therefore it is paramount that all the pertinent decision variables that

impact the overall cost of the software investment effort be accurately captured.

However, given the three sample decision variables of requirements, schedule and cost

changes, the question now becomes how do we capture this information? For this we now

resort to the next phase in our methodology which is the evidence gathering phase.

C. EVIDENCE GATHERING

In order to estimate the volatility of the returns associated with our current

software investment effort, we need to gather evidence to help derive our estimates.

Historically, gathering of evidence using previously completed software-related capital

investments as a proxy is a difficult task for the following reasons:

1. The current software investment effort under consideration might be the
first of its kind with no known comparables

2. Information is rarely or actively collected and managed in a disciplined
fashion

3. Even when information is collected, accessibility by third parties is
usually difficult due to the proprietary nature of the information.

 61

Thus more often than not the software executive is faced with the identifying

alternate sources of information to either assert or dispute their initial volatility estimates.

In our study, we propose the use of two sources of information, the first being historical

data (objective approach) and the second being expert opinions obtained using the Delphi

method (subjective approach). We choose to use both methods because we believe

intuition and judgment (subjective approach) should supplement quantitative analysis

(objective approach). More often than not, past success and failures serve as key

indicators of the future. Thus historical data can be used to predict and explore “what-if”

scenarios on future projects based on the use of forecasting and analytical analysis.

The Delphi Method is a technique first introduced by the RAND Corporation in

the 1940’s as a methodology for the elicitation of the opinion of an expert or groups of

experts to guide decision making by the making predictions about future events. It places

emphasis on a iterative, systematic, disciplined and interactive process of individual

interviews (usually conducted using questionnaires) and the outcome is based on the

Hegelian Principle of achieving consensus through a three step process of thesis,

antithesis, and synthesis [48]. In the thesis and antithesis steps, the team of experts

present their opinion or views on the given subject, establishing views and opposing

views, and consensus is ultimately reached during the synthesis phase as opposing views

are brought together to form the new thesis. Widely used as an estimating tool, the Delphi

Method has been used to estimate values for factors which appear in software estimation

models such as cost estimation [47] and risk estimation. Furthermore, it is one of the

approved techniques published by the U.S. Army Cost and Economic Analysis Center in

February 2001 for preparing or reviewing economic analyses in support of the decision

making process.

In the event that there is no historical data available, we resort to obtaining

information using the Delphi Method based on a minimum of two independent estimates

provided by two independent experts or two separate groups of independent experts. The

first estimate would provide the base case estimate with the remaining two independent

estimates serving to asses or refine the initial estimate independently. In the case that we

do have historical data but are unable to find projects meeting any or all of the criteria

 62

above, we proceed to “fit” the data to as close as possible to mimic our current software

investment effort by employing interpolation techniques to understand and forecast our

project based on the trends depicted in the historical data.

1. Data Fitting Techniques

To fit our data, we proceed to determine if the risks depicted in the historical data

are positively correlated to the risk presented in our current project. We proceed to

conduct a regression analysis by modeling and analyzing the historical data consisting of

values of the dependent variable as a function of one or more independent variables and

an error term which represents unexplained variation in the dependent variable. Each of

the parameters is estimated so as to give a "best fit" of the data using the least squares

method. The least squares method corresponds to the maximum likelihood criterion if the

experimental errors have a normal distribution and the best fit in the least-squares sense is

that instance of the model for which the sum of squared residuals has its least value, a

residual being the difference between an observed value and the value given by the model

[69].

The least squares problems fall into two categories, linear and non-linear

representative of linear and non-linear data in our case. The linear least squares problem

has a closed form solution, but the non-linear problem does not and is usually solved by

iterative refinement; at each iteration the system is approximated by a linear one, so the

core calculation is similar in both cases [69].

Confidence limits can be found if the probability distribution of the parameters is

known, or an asymptotic approximation is made, or assumed. Likewise statistical tests on

the residuals can be made if the probability distribution of the residuals is known or

assumed. The probability distribution of any linear combination of the dependent

variables can be derived if the probability distribution of experimental errors is known or

assumed. However running a regression analysis introduces two problems:

autocorrelation and multicollinearity.

Multicollinearity occurs when two or more explanatory variables in the regression

model are highly correlated, making it difficult or impossible to isolate their individual

 63

effects on the dependent variable [68]. It is easily solved by obtaining more data or

dropping one of the variables. Autocorrelation on the other hand occurs when the error

term in one time period is positively correlated with the error term in the previous time

period (positive first-order). This leads to downward-biased standard errors (and, thus, to

incorrect statistical tests and confidence intervals). The presence of autocorrelation can be

tested by calculating the Durbin-Watson statistic below [70].

Its value always lies between 0 and 4. A value of 2 indicates there appears to be

no autocorrelation [70]. If the Durbin–Watson statistic is substantially less than 2, there is

evidence of positive serial correlation. As a rough rule of thumb, if Durbin–Watson is

less than 1.0, there may be cause for alarm [70]. Small values of d indicate successive

error terms are, on average, close in value to one another, or positively correlated. Large

values of d indicate successive error terms are, on average, much different in value to one

another, or negatively correlated [70].

Once we have completed the evidence gathering phase, we are now ready to

proceed to the analysis phase in which we analyze the information to obtain the volatility

of our software investment effort. To accomplish this, we utilize a Monte Carlo

Simulation approach.

D. VOLATILITY ESTIMATION: MONTE CARLO SIMULATION

Volatility is used to quantify the risk of the asset based on the standard deviation

of the changes of the decision variable within a specific time period divided by its mean

to obtain a common sized percentage volatility measure (and the result is annualized). In

conventional financial investment theory, the Capital Asset Pricing Model (CAPM) is the

most commonly used technique for assessing market risk. The CAPM formula takes into

account the asset's sensitivity to non-diversifiable risk (also known as systemic risk or

market risk), often represented by the quantity beta (β) in the financial industry, as well

 64

as the expected return of the market and the expected return of a theoretical risk-free

asset. From a Real Options perspective, risk is a key driver in the value of a real option,

and is positively related to value. In the traditional NPV approach, high volatility

signifies high risk, high risk signifies high discount rates, and high discount rates mean

lower values. However, a high volatility is linked to high value in Real Options valuation

because greater volatility creates a wider range of possible future values of our

opportunity as we only will exercise our option if the value of the opportunity exceeds

the exercise price [46]. Greater uncertainty on the down side would not hurt as we simply

will not exercise. However, greater uncertainty on the up side produces a greater excess

of opportunity value over exercise price, and a correspondingly greater option value [46].

A Monte Carlo simulation which is the simulation technique we employ in our

study is an advanced computer-based simulation technique which is more or less an

extension of traditional simulation techniques of sensitivity and scenario testing in which

the critical success drivers or variables that affect the bottom-line variables are simulated

thousands of times taking into account interdependencies between the variables to

emulate all potential combinations and permutations of outcomes [14]. We therefore

model the risks facing our software investment effort using a Monte Carlo approach, and

specifically employ the Risk Simulator software provided by Real Options Valuation,

Inc. to derive the volatility of the software investment effort.

Estimating volatility from historical data or from the “fitted data” obtained from

extrapolating historical data is a fairly simple process. We simply apply the logarithmic

relative returns function and then take the sample standard deviation on it, annualize it by

multiplying by the square root of periods in a year. However, in the case of the evidence

obtained using the Delphi Method, we cannot directly apply this approach because the

information elicited is based on subjective probabilities, which cannot be modeled in the

traditional sense that classical objective probabilities are modeled. As mentioned earlier

on in the chapter, this volatility estimate gives an objective assessment based on the

known unknowns and in order to account for the software executive ignorance in the case

of “unknown unknowns”, especially in innovative software investment efforts, we

employ DST to further refine our objective estimates. In other words, the volatility

 65

estimate computed at this point using the historical data might have little or no

relationship with the potential volatility of our current software investment effort,

because other than telling us that similar projects experienced a certain amount of

volatility, it does not tell us the volatility of our software investment effort and the

historical estimates might not necessarily reflect intrinsic details that reflect the

difference between our current project and the historical projects.

Therefore to refine the historical volatility estimate of the previously completed

software investment, we propose the solicitation of additional information using several

expert opinions based on the Delphi Method (at least 2 opinions) as our source of

information and then use the DST approach to combine the information we received from

the experts and establish boundaries of the historical volatility estimates obtained in the

form of beliefs and plausibility based on subjective probabilities that take into

consideration unique attributes of the current software investment effort. We further

explain the mechanics of the DST approach in the next section.

E. VOLATILITY REFINEMENT USING DEMPSTER SHAFER’S THEORY

As mentioned in our introduction, DST is well positioned to address both

epistemic and aleotoric uncertainty. While traditionally, probability theory has been used

to characterize both types of uncertainty, recent criticisms of the probabilistic

characterization of uncertainty claim that traditional probability theory is not capable of

capturing epistemic uncertainty [50]. DST is a mathematical theory of evidence originally

developed by Dempster in 1967 [49] with roots embedded in Bayesian statistical analysis

and later expanded by Shafer in 1976 [49]. While Bayesian inference requires all

unknowns to be represented by probability distributions, which awkwardly implies the

probability of an event for which we are completely ignorant, DST takes over by

introducing belief functions to distinguish ignorance and randomness by assigning

probability mass to subsets of parameter space, so that randomness is represented by the

probability distribution and uncertainty is represented by large subsets [72]. In other

words while Bayesian theory requires probabilities for each uncertainty of interest, the

theory of belief functions provides a non-Bayesian way of using mathematical probability

 66

to quantify subjective judgments [51]. It measures degrees of belief [or confidence] for

one uncertainty on the probabilities for a related uncertainty.

The premise behind DST is it can be interpreted as a generalization of probability

theory where probabilities are assigned to sets as opposed to mutually exclusive

singletons. In the case that there is sufficient evidence to permit the assignment of

probabilities to single events, the Dempster-Shafer model collapses to the traditional

probabilistic formulation where evidence is associated with only one possible event [50].

DST relies on three basic functions: the basic probability assignment function, a primitive

of evidence theory which does not refer to probability in the classical sense, and two non-

additive continuous measures called Belief and Plausibility which are both used to

combine separate pieces of information (evidence) to calculate the probability of an

event, while at the same time defining the upper and lower bounds respectively of an

interval that contains the precise probability of a set of interest [23].

Since evidence can be associated with multiple possible events, e.g., sets of

events, the evidence in DST can be meaningful at a higher level of abstraction, a key

benefit needed at the strategic decision-making level without having to resort to

assumptions about the events within the evidential set [50]. Furthermore the DST model

can be used to cope with varying levels of precision regarding information with no

further assumptions needed to represent the information as demonstrated during a study

in addressing uncertainties in systems [50]. We posit that the demonstrated approach also

allows for the direct representation of uncertainties associated with software-related

capital investments since we can characterize vague inputs as sets or intervals with the

resulting output also being a set or an interval.

1. Mechanics of Dempster-Shafer Theory

DST is a theory about two things: 1) Degrees of belief and 2) Weights of

evidence, with a key benefit of DST being the ability to represent ignorance in the face of

uncertainty especially when there is no information so far. In probability theory, uniform

distributions are used to represent ignorance, however the problem with this approach is

 67

that we represent the space of possibilities affected by the probabilities we get [71]. The

theory of belief functions is based on two ideas [51]:

1) The idea of obtaining degrees of belief for one question from subjective

probabilities of a related question,

2) Dempster's rule for combining such degrees of belief when they are based on

independent items of evidence. Degrees of belief obtained in this way differ from

probabilities in that they may fail to add to 100%.

Both ideas are consistent with the Real Options pre-conditions as the degrees of

belief are established on a frame of discernment meant to address uncertainty. DST starts

off by assuming a Universe of Discourse  otherwise known as the Frame of

Discernment which is a set of mutually exclusive alternatives.

Thus a frame of discernment A of a set of mutually exclusive alternatives or

possibilities can be represented as

 = {A1………..An} ……………………………………………………………………….……….(1)

where A1 through An represents the set of possibilities or mutually exclusive alternatives.

A key stipulation of DST is that it should be only used to combine belief functions that

represent independent items of evidence. The independence required is simply

probabilistic independence applied to the questions for which we have probabilities,

rather than directly to the question of interest. In other words it means that the sources of

information (or at least their current properties as sources of information) are selected

independently from well-defined populations. For example, given the situation of

determining if a specific software requirement would increase program costs (1) or not

increase program costs (2), we can represent the number of possibilities as

 2,1  ……………………………………………………………………………………….(2)

We can then develop a set of propositions based on the three axiomatic propositions of

belief functions [71]. These axioms are:

(B1) Bel (Ø) = 0 ………………………………………………………………………….…….(3)

 68

(B2) Bel   = 1 ……….……………………………………………………………………….(4)

(B3) Given a set of subsets of  , A1………..An

Bel (A1  ….. An)  Bel (Ai) -  Bel (Ai  Aj) + …+ (-1)n+1Bel (A1  ……An)…. (5)

where axioms (B1) and (B2) are assertions from probability theory asserting necessary

things are maximally likely while impossible things are minimally likely, and axiom (B3)

asserts the sub-additive nature of DST, which is a key departure from the probability

rules. Specifically this is highlighted in inclusion-exclusion rule for probabilities with the

“equals” (=) symbol being replaced by the “greater than equals to” (≥) symbol. If there

is no evidence to support either hypothesis  1 or  2 (to show that the software

requirement would increase or not increase program costs), then a belief function can be

developed such that:

Bel ({ 1}) = 0 = Bel ({ 2})……………………………….………………………….(6)

where “0” corresponds to having no evidence, a key input assumption of DST, which is a

deviation from the school of thought in probability theory in that probability theory

stipulates the sum of all probabilities must equal 1 as depicted in the equation 7 below.

P({ 1}) + P({ 2}) = P () = 1……………….………………...…………………….(7)

Thus under DST the following claim can be asserted:

Bel ({ 1}) + Bel ({ 2})  1 …...……..………………………………………...........(8)

and

Bel   1 and Bel (A) = 0 for every A  …………………………………...…….(9)

where the belief function (Eqn 9) represents ignorance due to the lack of information to

support either hypothesis ( 1 or  2) regardless of the set of possibilities in  and

asserts that some possibility in  must be true hence both possible propositions are

equally likely. Furthermore, since Bel({1}) and Bel({2}) are independent (i.e.

 69

historical data and information provided by the panel of experts – the Delphi Method),

the following claim can be made:

Bel({1}) = 1/3, Bel({2}) = 0…………………………………………….…………(10)

Eqn 10 holds because the evidence supporting one hypothesis is not evidence

against its rivals until a fair bit of evidence has been gathered. In other words, it is not a

zero-sum game until late in the game [71]. In the case that we have “Masses” of

probabilities, belief in a hypothesis is constituted by the sum of the masses of all sets

enclosed by it (i.e. the sum of the masses of all subsets of the hypothesis). Masses

represent probabilities that are strictly additive, however they are distributed over all

propositions rather than the singletons of  and they encode degrees of belief [71].

Therefore a belief function based on masses can be represented as a mass function, which

is basically a function on the subset of possibilities satisfying the two axioms below

(Eqn 11 & 12), leading to the derivation of a function m:  [0,1] called a basic

probability assignment.

(M1) = m(Ø) = 0………………………………………………………………………(11)

(M2) 



A

m 1)A(…..……………………………………………………….… (12)

where

m(A) is A’s basic probability number whose value expresses the proportion of all

relevant and available evidence that supports the claim that a particular element of  (the

universal set) belongs to the set A but to no particular subset of A [50]. In other words it

represents the strength of some evidence or our exact belief in the proposition represented

by A. The value of m(A) pertains only to the set A and makes no additional claims about

any subsets of A. Any further evidence on the subsets of A would be represented by

another basic probability number, e.g., B  A. m(B) would the basic probability number

for the subset B [50]. The function m:  [0,1] becomes a belief function if it satisfies

Bel (Ø) = 0, Bel (…………………………………………………………..…….(13)

Since masses represent probabilities that are strictly additive, and encode degrees

of belief accordingly, the lower bound belief for a set A defined as the sum of all the

 70

basic probability assignments of the proper subsets (B) of the set of interest (A) (BA).

In other words, it is the degree of belief in A which is the sum of all the mass allotted to

subsets of A and can be represented by the following formula [71].

Bel(A) = 

AB

)B(m ……………..……….……………………………………………..(14)

Plausibility on the other hand is 1 minus the sum of the masses of all sets whose

intersection with the hypothesis is empty. It is an upper bound on the possibility that the

hypothesis could possibly happen, i.e., it "could possibly happen" up to that value,

because there is only so much evidence that contradicts that hypothesis [23]. In essence

plausibility expresses how much we should believe in A if all currently unknown facts

were to support A. Plausibility can be represented as follows:

)A(1)A(BelPl  …………………………………………………………………….(15)

where

A is the complement of A in the classical sense. Consequently given the computation of

both belief and plausibility above, the precise probability of an event in the classical

sense lies between the upper and lower bounds established by plausibility and belief

respectively. In the event that plausibility equals to belief as shown in Eqn 15, all the

probabilities are classical probabilities

Bel(A) = P(A) = Pl(A) ………………………………………………………………..(16)

F. DEMPSTER’S RULES FOR COMBINATION OF EVIDENCE

Combining information or evidence from multiple sources (historical data and

Delphi method) in the form of belief assignments serves to aggregate the information

with respect to its constituent parts. Dempster proposed a standard combination rule

which can be represented as [50]:

m12(A) = 
 ACB

21

1

)C()B(

K

mm
when A  Ø …….……………………………………..(17)

where

 71

K = 
 ØCB

)C(2)B(1 mm

which is computed by summing the products of the belief probability assignments (bpa’s)

of all sets where the intersection is null represents basic probability mass associated with

conflict, and m12(A) is calculated from the aggregation of two bpa’s m1 and m2.

1. Mechanics of Dempster Rule of Combination

Assuming we have two pieces of evidence, based on say historical data and expert

judgment (Delphi Method), we now combine the pieces of evidence from both sources

using the Dempster’s combination rules by computing the orthogonal sum of both pieces

of evidence. First we determine all the pairs of sets whose intersection is A for a given set

A such that

A1 A2 = A. We then add up the basic probability assignments m1(A1) and m2(A2),

giving us


 AAA

2211

21

)A()A(mm ……………………………………….…………………………(19)

Then the orthogonal sum of m1 and m2 defined by m = m1m2 could then be

given as m(Ø) = 0 and is demonstrated in the matrix below (Table 4) in which we

compute the orthogonal sum of three hypothetical risk factors (Risk1, Risk2 and Risk}

affecting a software investment program based on two independent expert assessments.

Table 4. Orthogonal Sum Of Basic Probability Assignments.

 72

Based on the matrix (Table 4), we can obtain the resulting three evidence functions.

m1m2({Risk1})

= m1({Risk1})*m2({Risk1)} + m1({Risk1,Risk2})*m2({Risk1})

 + m1({Risk1,Risk2,Risk3})*m2({Risk1}) + m1({Risk1})*m2({Risk1, Risk2}) +

m1({Risk1})*m2({Risk1, Risk2, Risk3})

m1m2({Risk1,Risk2})

= m1({Risk1,Risk2})*m2({Risk1,Risk2})

+ m1({Risk1, Risk2})*m2({Risk1, Risk2, Risk3})

+ m1({Risk1, Risk2, Risk 3})*m2({Risk1, Risk2})

m1m2({Risk1,Risk2,Risk3})

= m1({Risk1,Risk2,Risk3})*m2({Risk1,Risk2,Risk3})

We now proceed to put all these concepts together through the use of an example in the

following section.

G. VOLATILITY COMPUTATION: EXAMPLE

In order to estimate the volatility of the future returns on a software investment

effort based on requirements, scheduling and cost estimation risks using our approach, we

develop a simple hypothetical example in which a software executive needs to make an

investment in the software platform of a KC-X Air refueling aircraft. In this example, the

key assumptions are as follows:

The discounted future benefits or value of the investment program ($305 million)

has been justified using traditional Net Present Values (NPV) analysis with a projected

cost of ($55 million) and resulting in a NPV of $250 million (we discuss the topic of

valuing software investments in the next chapter). Similarly based on a preliminary

analysis of the software investment program using the “2T” approach proposed in the

previous chapter, the executive has identified requirements uncertainties as being a key

 73

contributing factor to risk. We further assume there is historical data available and we are

able to come up with initial estimates based on the historical data at hand. The executive

also has the option of using only estimates obtained from the Delphi Method (expert

opinions). However, the executive decides to use historical data. The project was

projected to contain 1000 requirements based on the Use Cases and expected to be

delivered in 12 months. Therefore based on these underlying assumptions, we develop

the framework of this problem in a model and run a Monte Carlo simulation using the

Risk Simulator software provided by Real Options Valuation, Inc.

Specifically, the software executive starts of by developing and fitting his data

estimates based on historical data of previous programs of similar size, scope and

complexity and creates three scenarios, A, B and C, of the most likely, least likely and

likely based on previous experiences depicted in the historical data. Next we select a

probability distribution. Since we are dealing with random quantities which are positive

in nature and whose values cannot fall below zero we select the lognormal distribution

which utilizes the following four mathematical constructs to compute four key measures

known as “moments” (returns, risk, skewness and kurtosis) of our logarithm distribution

(A moment is used to describe the centroid of a statistical set of data encapsulating the

area of concern). These measures are computed using the following formulas as outlined

in [14]

f(x) = 2)][ln(2

2)]ln()[ln(

)ln(2

1 







x

e
x

 for 0,0;0  x

mean = exp 









2

2

standard deviation =]1))[exp(2exp(22  

skewness =  ))exp(2(1)exp(22  

excess kurtosis = exp 6)2exp(3)3exp(2)4(222  

 74

The model is run and the simulation calculates numerous scenarios of the model

by repeatedly picking values from the lognormal distribution for the uncertain variables

using the values in the model. Based on the model results, the volatility of the software

investment program due to risk of requirements increase was computed by the model as

0.0017. This volatility measure was determined by computing the logarithmic returns of

our $305 million investment based on the risk of requirement changes over the three

scenarios. This volatility resulted in the cost exceeding the projected budget by

$1,829,697.42 and consequently led to the reduction of NPV from $250,000,000 to

$248,170,302.58.

Figure 22. NPV Returns on $305 million Software Investment. The frequency
histogram shows the frequency counts of values occurring in the total
number of trials simulated. The vertical bars shows the frequency of a
particular NPV occurring out of the total number of trials, while the

cumulative frequency depicted by the smooth line shows the total
probability of all values at and below the maximum NPV occurring in

the forecast.

Figure 22 above depicts a graphical distribution of the returns associated with our

investment while Figure 23 on the next page depicts the statistics associated with the

computations.

In further analysis conducted in the model to determine the likelihood/probability

of requirements changes by phase in the software development process, it was

 75

determined that the probability of requirements increases during the specification,

development and validation phase of the software development process were 0.32, 0.41

and 0.27 respectively. These associated histograms and statistics are depicted in Figures

24 – 29.

Figure 23. Volatility of the returns on the $305 million Software Investment.
The forecast statistics summarizes the distribution of the forecast

values in terms of the four moments of a distribution.

Figure 24. Probability of Requirements Increases during the Specification
Phase.

 76

The frequency histogram (Figure 24 on previous page) shows the frequency counts of
values occurring in the total number of trials simulated. The vertical bars shows the

frequency of a particular probability of requirements increase during the specification
phase occurring out of the total number of trials, while the cumulative frequency depicted

by the smooth line shows the total probability of all values at and below the maximum
probability of requirements increase during the specification occurring in the forecast.

Figure 25. Statistics of Requirements Increases during Specification Phase.
The forecast statistics summarizes the distribution of the forecast

values of the probability of requirements increases during the
specification phase in terms of the four moments of a distribution.

 77

Figure 26. Probability of Requirements Increases during the Development
Phase. The frequency histogram (Figure 26 on previous page) shows
the frequency counts of values occurring in the total number of trials

simulated. The vertical bars shows the frequency of a particular
probability of requirements increase during the development phase

occurring out of the total number of trials, while the cumulative
frequency depicted by the smooth line shows the total probability of all

values at and below the maximum probability of requirements
increase during the development phase occurring in the forecast.

Figure 27. Statistics of Requirements Increases during Development Phase.
The forecast statistics summarizes the distribution of the forecast

values of the probability of requirements increases during the
development phase in terms of the four moments of a distribution.

 78

Figure 28. Probability of Requirements Increases during the Validation
Phase. The frequency histogram (Figure 28 on previous page) shows
the frequency counts of values occurring in the total number of trials

simulated. The vertical bars shows the frequency of a particular
probability of requirements increase during the validation phase
occurring out of the total number of trials, while the cumulative

frequency depicted by the smooth line shows the total probability of all
values at and below the maximum probability of requirements
increase during the validation phase occurring in the forecast.

Figure 29. Statistics of Requirements Increases during Validation Phase. The
forecast statistics summarizes the distribution of the forecast values of
the probability of requirements increases during the validation phase

in terms of the four moments of a distribution.

 79

H. INTERPRETING THE FORECAST RESULTS

To obtain the charts above, we examined two of the three variables in question -

requirements increases during the specification and requirements increases during the

development phase. We selected the Lognormal distribution from the Risk Simulator

Tool due to the multiplicative impact of the variables in question on the overall volatility

of the software investment.

The four moments described as the first, second, third and fourth moments which

the forecast statistics summarizes are respective measures of the following parameters

[14].

1. Measure of Returns

2. Measure of Risk

3. Measure of Skewness

4. Measure of Kurtosis

All these four moments provide a more comprehensive view of the project under

analysis and are explained in detail in [14] as follows: The first moment depicted by the

mean value measures the expected rate of return on the investment effort, by measuring

the location of the different scenarios of the investment effort and the average possibility

of the outcomes. The second moment depicted by mathematical functions such as

standard deviation, variance, coefficient of variation and volatility provides a risk

measure of the investment effort through a measure of the variability of the variable

(spread of the distribution). The third moment provides a measure of skewness by taking

into account the differences in the skewness of a distribution should a situation arise that

two or more different investment projects under consideration have the same mean and

standard deviation. The fourth moment provides a measure of the peakedness (kurtosis)

of the distribution as a way of differentiating between two or more investment projects

with similar mean, risk and skewness distribution (first, second and third moments). This

means that although the risk and returns are identical, the probability of extreme and

 80

catastrophic events occurring is higher for a high kurtosis distribution and a higher excess

kurtosis value indicates that the downside risks are higher.

The volatility of requirements can be observed in Figures 24, 26 and 28. The

kurtosis is given by -0.6317, -0.7401 and -0.7022 for the specification, development and

validation phases respectively. From our observations, we can see that that the probability

of requirements changes are much higher during the development phase.

I. APPLICATION OF DEMPSTER-SHAFER THEORY

At this point since we have determined the volatility of our software project as

well as the associated probabilities of the impact of the risk of requirements changes, the

executive would like to further reduce the uncertainty in the objective probability

estimates to better estimate the impact of requirements changes, so that the appropriate

option can be created where applicable. Therefore we now resort to the DST approach.

We begin by partitioning our problem of requirements increases based on the

phases of the software engineering (SE) process, so as to identify the impact of the

requirements increases on the different phases of the SE process on the value of the asset.

We accomplish this by collecting additional evidence using the Delphi Method to gather

more information based on the expert opinions of two independent experts.

We then develop our frame of discernment which consists of the set of mutually

exclusive alternatives or possibilities which the risks of requirements increases pose to

our current software investment effort. Therefore  would be the set consisting of all the

possible phases in which the risk of requirements increases affect the value of the

software investment. We denote these as follows

 Requirements increase during Software Specification (SS)

 Requirements increase during Software Development (SD)

 Requirements increase during Software Validation (SV)

Thus our frame of discernment is  = {SS, SD, SV}

 81

Moving along the lines of our example, suppose independent expert’s #1

determines subjectively that the initial estimates obtained from the historical sources are

0.90 reliable. i.e. requirements increases during the development phase contributed the

most to the volatility of the software-investment. Therefore under DST belief function we

can establish a 0.9 degree of belief that increases in requirements during the development

phase would lead to a increase in costs, and a 0 (not 0.1) degree of belief that increase in

requirements during the development phase would not lead to increases in costs. (Under

classical probability theory, the software executive can say that the independent expert’s

Delphi Method is 0.1 unreliable.)

The 0.9 and the 0, (which do not add to 1) together constitute a “belief function”,

where the “0” degree of belief does not imply that independent expert #1 is sure that

increases in requirements during the development phase would not lead to cost increases,

as is the case in classical probability, but simply implying that the historical estimates

gives independent expert #1 no reason to belief that increases in requirements during the

development phase would not lead to cost increases.

We can then develop our propositions based on the following axioms

(B1) Bel (Ø) = 0

(B2) Bel   = 1

(B3) Given a set of subsets of  , A1………..An

Bel (A1  ….. An)  Bel (Ai) -  Bel (Ai  Aj) + …+ (-1)n+1Bel (Ai  …… An)

Therefore independent expert #1’s belief Bel(A) in any subset  could then be given as

follows:

Bel({SD}) = 0.9

Bel({SD, SS, SV}) = 1

Note that the belief function basically conveys the same information as the basic

probability assignments as it represents evidence in favor of the proposition. For example

 82

we can also assign basic probability assignments based on Independent experts #1

opinion as shown below since each element is the sum of the probabilities of the sets

enclosed by the element. (the concept of masses), since for example SS could further

consist of interface and operating systems requirements as its subset both of which have

their associated probabilities.

m({SD}) = 0.9

m({SD, SS, SV}) = 0.1

We can then compute plausibility using the equation below

)A(1)A(BelPl 

To further compute Bel (A) as a doubt function

Dou({SD}) = Bel({SS, SV}) = 0

Dou({SD, SS, SV}) = Bel (Ø) = 0

Therefore our upper probability function in the form of plausibility for each subset is

Pl({SD}) =1 - Dou({SD}) = 1

Pl({SD,SS,SV}) =1 - Dou({SS,SD,SV}) = 1

To illustrate the concept of combination of information from an additional source

of information (expert opinion), we present two scenarios. The first scenario depicts the

second expert opinion providing information consistent with the objective estimates and

the second providing conflicting evidence against the objective estimates.

In our first scenario, say the independent expert #2’s also has a similar subjective

probability of 0.90 on the reliability of requirements increases affecting the specification

phase based on the assessment of historical estimates. Thus based on the second source of

information (independent expert #2’s Delphi Method) we can reasonably assign

probability assignments to each of the elements as follows:

m({SD}) = 0.9

m({SD, SS, SV}) = 0.1

 83

and also develop the corresponding belief function

Bel({SD}) = 0.9

Bel({SD, SS, SV}) = 1

Similarly the computation of plausibility mimics the plausibility computation above.

Dou({SD}) = Bel({SS, SV}) = 0

Dou({SD, SS, SV}) = Bel (Ø) = 0

Therefore our upper probability function in the form of plausibility for each subset is

Pl({SD}) =1 - Dou({SD}) = 1

Pl({SS,SD,SV}) =1 - Dou({SS,SD,SV}) = 1

 We now attempt to combine the information from both independent expert #1’s &

#2’s Delphi Method in order to obtain our evidence functions. We begin this process by

creating a matrix and multiplying the masses from the associated column and row of both

sources of information in order to calculate the combined basic probability assignment

for a particular cell. In other words to compute the orthogonal sum in the form m =

21 mm  where m1 and m2 represent the basic probability on our frame of discernment

 . Table 5 below shows the basic template we use for our computations.

Table 5. Matrix Template Used To Compute Orthogonal Sum Of Basic Probability
Assignments

We apply this template to our scenario and are able to come up with the combined

basic probability assignments as shown in the matrix below (Table 6) by using Eqn 19

above given by the equation on the next page.

 84

Table 6. Orthogonal Sum Of Basic Probability Assignments For Consistent Evidence


 AAA

2211

21

)A()A(mm

Since the information provided by independent expert #1’s & #2’s Delphi Method is

consistent. We obtain the following evidence functions

m1m2({SD}) = 0.81 + 0.09 + 0.09 = 0.99

m1m2({SD, SS,SV}) = 0.01

Therefore given the evidence presented by m1 and m2, we can say the most

probable belief for this universe of discourse is consistent with the probability

assignments of both belief functions and no further action is needed besides determining

the option to address the risk presented.

In the event that the sources of information contradict each other as is the case in

our second scenario, such that while independent expert #1’s evidence indicates a 0.9

probability of belief, independent expert #2’s evidence indicates a 0.7 probability of

belief, we assign the following probability assignments.

m({SD}) = 0.7

m({SD, SS, SV}) = 0.3

and also develop the corresponding belief function

Bel({SD}) = 0.7

Bel({SD, SS, SV}) = 1

Similarly the computation of plausibility mimics the plausibility computation above.

 85

Dou({SD}) = Bel({SS, SV}) = 0

Dou({SD, SS, SV}) = Bel (Ø) = 0

Therefore our upper probability function in the form of plausibility for each subset is

Pl({SD}) =1 - Dou({SD}) = 1

Pl({SS,SD,SV}) =1 - Dou({SS,SD,SV}) = 1

Thus we are able to come up with the following matrix of combined probabilities.

Table 7. Orthogonal Sum Of Basic Probability Assignments For Conflicting Evidence

We obtain the resulting evidence functions:

m1m2({SD}) = 0.63 + 0.27 + 0.07 = 0.97

m1m2({SD, SS,SV}) = 0.03

To examine the degree of conflict we revisit Eqn 17 above depicted as:

m12(A) = 
 ACB

21

1

)C()B(

K

mm
when A  Ø

where

K = 
 ØCB

21)C()B(mm

However since we have no null intersections, the sum of all such sets is in our matrix in

Table 7 is equal to 0 meaning there is no conflict in the two expert’s opinion.

The plausibility (certainty) of this belief is computed based on the following doubt

functions:

 86

Dou({SD, SS, SV}) = Bel (Ø) = 0

Dou({SD}) = Bel (SS, SV) = 0

Thus plausibility is as follows:

Pl({SD, SS, SV) = 1- Dou({SD, SS, SV}) = 1

Pl({SD) = 1- Dou({SD }) = 1

The resulting value of 1 in both cases denotes the upper probability function and

expresses how much confidence there is that ({SD, SS, SV}) and ({SD}) risk contributes

to volatility. Based on the information derived from the matrix we can establish the

following joint beliefs

Joint Belief of Independent expert #1 and #2 estimates in {SD} is 0.97

Joint Belief of Independent expert #1 and #2 estimates in {SD, SS, SV} is 1

Within the context of our assumptions, the joint belief in {SD} of 97% infers that

both independent experts have a high belief in the propositions surrounding requirements

increases during the development phase. Any variations between inferred probability

assignments based on the mass of evidence under this joint belief and our initial volatility

estimates would reflect inconsistencies. These variations are captured and used to refine

the initial probability estimates to reflect the new “findings” which are then modeled

using a Monte Carlo simulation to derive new estimates for the project and an overall

volatility for the project.

For example, in our scenario, say after we revise our probability estimates to

reflect the findings based on the application of the approach and model these new

estimates, we obtain a new volatility estimate of 0.0012 which infers a reduction in our

original volatility estimate of 0.0017. This new volatility of the software project would

result in an increase of NPV from the initial computed estimate of $248,170,302.58 to

$248,762,936.51 meaning that since our project is less volatile than we initially assumed,

our NPV would increase to reflect the more accurate valuation in light of the revised

volatility of our investment effort. Figure 30 on the next page depicts the histogram

reflecting our new data under this scenario.

 87

Figure 30. Revised NPV Returns on $305 million Software Investment. The
frequency histogram shows the frequency counts of values occurring
in the total number of trials simulated. The vertical bars shows the

frequency of the revised NPV returns occurring out of the total
number of trials, while the cumulative frequency depicted by the

smooth line shows the total probability of all values at and below the
maximum revised NPV occurring in the forecast.

Figure 31. New NPV Returns on $305 million Software Investment based on
refined probabilities. The forecast statistics summarizes the

distribution of the revised forecast values in terms of the four moments
of a distribution.

 88

J. ANALYSIS

We can then repeat this whole process as often as needed until we feel confident

that we have reduced all our uncertainties as much as possible. It is also important to note

that other special cases might also exist related to categorical, completely non-

probabilistic information. In these cases, while one is 100% confident in the reliability of

the source of information or evidence, the information is still lacking in completely

answering our question. For example in hypothetical example drawn along the lines of

reasoning in [51] there might be conclusive evidence, that a change in a software

requirement might affect one of three places in the overall software, without any clue as

to which one. This calls for a belief function that assigns a degree of belief of 100% to

the three places as a set, but a degree of belief of 0% to each of the three individually.

In our example, we are dealt with a question that has only two answers (whether

or not increases in requirements are associated with increases in costs). In the case that a

question has more than two answers, belief functions can be derived by determining the

degree of belief for each answer and for each set of answers, although the belief function

may be very complex if the number of answers (or the size of the “frame”) is large. Now

that we have successfully depicted how we estimate volatility, we proceed to the next

phase of our process, which is the development of the “real option” to mitigate the risks.

We depict this in the following chapter.

 89

V. REAL OPTIONS FRAMEWORK FOR SOFTWARE
INVESTMENTS

…there is nothing more difficult to take in hand, more perilous to
conduct, or more uncertain in its success than to take the lead in the

introduction of a new order of thing…

 (Niccolo Machiavelli, philosopher, 1469-1527)

A. INTRODUCTION

The underlying premise of the Real Options (RO) approach is the ability to link

uncertainty to the value of flexibility within the real options framework. In the previous

two chapters, we addressed the critical issue of uncertainty identification and

quantification in order to determine volatility, a key input into the real options

framework. We also established that uncertainty affects decision associated with

software-related capital investments. In this chapter, we build on the body of knowledge

established thus far and proceed to establish an RO framework that could be used to

address software-related capital investments under the underlying assumption that when

properly utilized by a well empowered management team (another precondition for the

application of RO theory), it would better guide the decision-making process. However,

before we establish the framework we first discuss the issue of valuing the underlying

software investment.

B. BASE CASE VALUATION OF THE UNDERLYING ASSET

In Real Options risk-based analysis, the second most important measure besides

volatility estimation is the valuation of the underlying asset being considered for

acquisition. This is typically the first activity accomplished in a software-related capital

investment effort. The RO approach calls for the existence of a financial model before it

could be applied. This involves presenting or developing a financial model of the

underlying asset, as the real options approach requires the use of an existing discounted

cash flow model despite their limitations. In a discussion of the limitations of some of the

 90

investment valuation approaches in the assessment of previous work done in Chapter 2, it

was asserted that the limitations of the existing valuation models were primarily due to

the lack of consideration of managerial flexibility. Net Present Value (NPV) is measured

in today’s dollars and its computation is based on the principle of discounting in which

all projected future cash flows representing estimated costs, cost savings, and revenues at

various points during the useful lifetime of the project, are discounted utilizing a discount

rate. This discount rate captures the opportunity cost and the cost of money (based on

interest rates) associated with the underlying investment, back to the present time under

the assumption that one dollar today is worth (1 + r)t dollars at time t in the future [52].

The traditional NPV formula is given as

NPV = 
 

t

t
t

t

r

C

1)1(
 - C0

Similarly, a discounted cash flow (DCF) analysis can be computed as

DCF =
1

1

)1(r

CF


 +

2
2

)1(r

CF


 + …..+

n
n

r

CF

)1(

where CF = Cash Flow, r = discount rate and t = time

It must however be emphasized that in performing a discounted cash flow

analysis the discounting factor is concerned with two things: the discounting convention

and the discount rate itself. There are several discounting conventions ranging from

continuous versus discrete, midyear versus end-of-year, to beginning versus end-of-

period. It is critical to understand the convention being used in order to maintain

consistency in results as each of the discounting conventions produce different results.

The second factor, discount rate is normally the weighted average cost of capital

(WACC) for the cash flow series. However, this is considered to be somewhat

problematic because of risks ranging from organizational capital structure and investment

policies to the flaws in the Capital Asset Pricing Model (CAPM).

As detailed financial data is not always readily or publicly available for U.S.

government investment project, we rely on guidance provided by the U.S. Office of

 91

Management and Budget (OMB) for NPV computation [53]. OMB states that the

standard criterion for deciding whether a government program can be justified on

economic principles is based on the discounted monetized value of expected net benefits

(i.e., benefits minus costs). The guidance further states that “social” net benefits and not

the benefits and costs to the federal government, should be the basis for evaluating

government programs or policies that have effects on private citizens or other levels of

government. Consequently, the emphasis on “gained” social benefits either real or

perceived needs to be factored into NPV computations in software related capital

investments funded and operated by the government. In the case of non-measurable

benefits and costs, further analysis is needed to guide decision makers when they have to

weigh the net non-measurable benefits against net measurable costs.

From a DoD perspective, the perceived value created of any software investment

is gauged from the ability of the investment to contribute meaningfully to the DoD’s

Strategic, Operational and Tactical objectives, be it for the war-fighter or the running of

the various agencies supporting the war-fighter. While it might be somewhat difficult to

assign a monetary value to this benefit, attempts could be made to either estimate or

employ qualitative forecasting techniques in the absence of any current or historical data.

Expert opinions or relative estimates based on comparable proxies could also be

explored. Specifically, the value of DoD software or technological investment could be

gauged and estimated on how the investments contributes to or enhances mission or

operational readiness, value received in the form of reduction in casualties/injuries

amongst U.S. service members, estimated net annual recurring savings, etc. In the case of

weapons systems development, the expected benefits realized prior to the development of

counter-measures by potential adversaries also need to be factored into the NPV

computation. Regardless of the factors explored, it must be emphasized that this is a non-

trivial task.

For the purposes of our study, we have chosen to employ relative NPV valuation

as depicted in our example in the previous chapter. Under traditional NPV analysis, a

project with a positive NPV increases the wealth of the firm, that is, the total value

generated through the project’s lifetime is superior to the cost of financing it and a higher

 92

NPV is always preferable to a lower NPV, while a negative NPV represents an

unacceptable investment. This traditional NPV formula can be tailored to specifically suit

a software development project as outlined in [52] in which the NPV for a software

development project is computed in terms of five high-level determinants and the

equation outlined as follows:

NPV =
t
tt

r

MC

)1(

)(




 - I

where

C
r

CF
t

t  







)1(

and

M =  







 t

t

r

M

)1(

where the standard assumption in [52] is (C –M) is always positive and

I is the (initial) development cost. It represents the total present value of all

negative cash flows from the time the decision to invest is made to the time of the first

major positive cash flow (time T) with development cost and development time are

positively correlated

T is the (initial) development time or time to market. It is defined as the elapsed

time between the commitment to invest in the project and the time of its first major

positive cash flow. This period covers activities leading to the deployment of the end

product.

C is the asset value. It represents the total value of the positive cash flows that the

project is expected to generate during its lifetime, calculated at time T. Asset value

mainly consists of the revenues from sales in the case of Foreign Military Sales, direct

cost savings from using the end product and social benefits derived from acquisition of

 93

the software product. Direct product costs, which represent the expenses incurred in

proportion to the revenues generated, are deducted from asset value.

M is the operation cost. It is the total value of all negative cash flows of the

operation phase, calculated at time T. This amount consists mainly of regular

maintenance costs and pre-planned future investment outlays. Note that direct product

costs (which are deducted from asset value) are not included here.

r is the rate at which all future cash flows are to be discounted (the discount rate).

Technically speaking we can reasonably conclude that NPV is a Real Options

approach that assumes no flexibility in the decision making process. When we factor in

flexibility in the form of Real Options created to hedge risk is factored into NPV

computation, we arrive at the following formula

NPV =
t
tt

r

MC

)1(

)(




 - I + 

where

 is the flexibility (option) premium. It measures the contribution of the project’s

inherent strategic flexibility to its base NPV under uncertain conditions. For example, the

ability to delay the commitment of certain resources, or to change the maintenance

schedule.

The determination of the flexibility premium is dependent on several factors.

Before we outline its determination, we need to revisit the issue of RO and how they

relate to software related capital investments. First, we outline the approach to refining

the value of our underlying asset.

C. REFINING ASSET VALUE USING MONTE CARLO SIMULATION

Traditional valuation methods are usually a static single point estimate which is

insufficient for credible analysis. Consequently to better or accurately estimate the actual

value of a particular project, a Monte Carlo simulation would need to be run [14].

 94

However, before the Monte Carlo simulation can be run, the key input variables which

are deemed highly uncertain in the future need to be identified. This could be

accomplished by conducting a sensitivity analysis on the valuation model. Once the key

input variables have been identified, the following steps as outlined in [14] are carried out

during the Monte Carlo simulation.

1) A probability distribution is defined for each of the key inputs which

underlie the cash flows. Initial estimates of the key input parameters, are

obtained using either historical data or subject matter experts or a

combination of both.

2) An outcome is drawn in each simulation from each distribution and the

present value of the cash flows estimated based on the draws

3) The expected value of the project is determined from the mean of the

distribution of the expected cash flows which is computed after several

simulations and the standard deviation or the variance of the distribution

of the cash flows can be used to value the project.

D. REAL OPTIONS

 An option gives its owner or option holder the right, but not the obligation, to buy

or sell an asset at a certain pre-negotiated price and the most obvious determinant of an

option’s value is its intrinsic value, or what it would be worth if it were immediately

exercised [6]. This amount, defined as the option price less the exercise price, ultimately

determines how much money the option holder makes. An option can still be valuable

even if it has no intrinsic value because the possibility exists that the option could be

profitably exercised in the future. The value of this possibility is an option’s time value

and is determined by three factors: volatility, length of time before an option expires, and

risk-free-rate [6]. In other words, an option is essentially a precise contract between the

software executive and the contractor (in the case of a government acquisition) to buy or

sell a specific capability known as the options underlying instrument. In the case of

software investment options from both a managerial and technical perspective, the

underlying instrument is the software itself. The “contract” has an associated strike price

 95

at which the contract or option may be “exercised” or acted on as well as an expiration

date. In general, options can be grouped into two categories: “calls” and “puts”, both of

which could be bought and sold.

1. Buying Call and Put Options

In the event that a software executive buys a call option, the software executive

would have the right but not the obligation to buy the underlying instrument at the strike

price on or before the expiration date which would more than likely should be tied to the

software development or delivery schedule in the case of software acquisitions. In the

event that a put option is bought, the software executive would have the right but not the

obligation to sell the underlying instrument on or before expiration of the option.

2. Selling Call and Put Options

On the other hand, if the software executive decides to sell a call option, the

executive becomes obligated to sell the option or underlying interest at the strike price to

the buyer should the buyer so decide and in the case that the software executive decides

to sell a put option, the software executive becomes obligated to buy the underlying

interest. In this case, since the software executive is the “writer” of the options, the

executive would really has no control over whether or not the option is exercised.

Both cases involve a fee called the “premium”, with the purchase price of the

option being the premium in the event that an option is bought, and the selling price

being the amount that is received. Once the appropriate options have been identified, they

need to be valued accordingly.

E. IDENTIFYING STRATEGIC REAL OPTIONS

As discussed in the previous chapter, we implement our methodology which

incorporates the Dempster-Shafer theory (DST) approach to volatility estimation which

generally involves solving two related problems.

1) First, we must sort the uncertainties in the problem into a priori

independent items of evidence.

 96

2) Second, we must carry out the Dempster's rule computationally by

combining the evidence obtained from all sources

We then model our results stochastically using the Risk Simulator and determine

the correlation of variability. Once we have determined the volatility of our software

investment effort, we can now identify possible options which we could used to manage

the risk associated with the software investment effort. Generally speaking, over the

course of the examination of a software investment effort, several independent options or

combinations of options (compound options) can be identified to mitigate or hedge risk

as it emerges. While options come in various forms such as American, European, Asian,

and Bermudian option, the underlying concepts between each of these forms remain the

same with the only differences being in the period or time of execution of the options. To

applying options theory in this study, we explore various types of options for analyzing

and addressing uncertainties associated with software-related capital investments which

we broadly categorize into

1) Expand/growth options,

2) Wait/Deferment options and

3) Contract/Switch/Abandon options.

We depict these categories in Figure 32 below.

 97

Switch
up

Scale
up

Expand /
Growth

Scope
up

Switch
down

Scale
down

Contract /
Switch /
Abandon

Scope
down

Wait /
Defer

Study/
start

Real
Option

Category

Real
Option

Type

Option to scale up through cost effective sequential investments as
knowledge of the product increases

Delay Investment until more information or skill is acquired.
e.g. Introduction of new requirements

A flexibility option to switch products, processes given a shift in underlying
price of input and output demands

Investment in proprietary assets of one industry enables company to enter
another industry cost effectively . Link and Leverage

Shrink or shut down a project part way through if new information
changes the expected payoffs. e.g. Introduction of new requirements

Switch to more cost effective and flexible assets as new information
is obtained. e.g. switch from custom development to COTS

Limit scope of (or abandon) software project when there is no further
potential in the business opportunity is meant to address

Description and Example

Figure 32. Sample Options to Address Software Investments (From: [6]).

In addition we also explore variants or combinations of options in the form of

Sequential and Simultaneous compound options and explore a valuation methodology for

the options.

F. PARTITIONING: DECOMPOSING THE SOFTWARE SOLUTION

To take advantage of the options identified above, we address the issue of

software design. From a Real Options perspective, the decomposition of the software into

components, modules or subsystems serves to introduce flexibility which the software

executive or program manager could exploit and benefit from. Software design is a key

activity aimed at conceiving how a software solution would solve a particular problem

and it involves dealing with critical design decisions such as the decomposition/

partitioning of the software product under consideration into components to make its

 98

acquisition and development more manageable. Given the impact which design decisions

have on a software product, managerial concerns/uncertainties ranging from work-force

capability to maturation/market availability of the proposed technology and technical

concerns/uncertainties ranging from maintainability to reusability should be factored into

design decisions. It must be noted that while we break this down into both managerial

and technical concerns, these concerns can and do overlap. In the case of large-scale

capital-intensive software-investment efforts, decomposing or partitioning the overall

software product into well-defined, independent components based on functionality has

the benefit of allowing each of the independent components to be developed by different

vendors with the understanding that the ultimate end-goal would be to integrate each of

the independent components to arrive at a fully functional software product that meets the

customers needs. However it must be noted that design decisions are mostly made under

uncertainty, and while these uncertainties might have been factored in the design during

the high-level functional decomposition of the software, decomposition does not imply

that uncertainty no longer exists, but merely reduced. This is because by virtue of

software being an intangible artifact, it is impracticable to predict or have access to

perfect information to key factors associated with the operation of the software when

deployed at the time of the design. Hence uncertainties might still remain in a component

or across components after decomposition stemming from both development and

operational perspective concerns. Furthermore, while it is impossible to totally eliminate

uncertainty, reduction strategies could however be employed such as the use of high

fidelity modeling and simulation tools explicitly tailored to address uncertainty. By

modeling and simulating the areas of concern within and across the components

uncertainty, especially uncertainty arising from requirements uncertainty, operational

uncertainty and uncertainty about the emergent attributes could be either reduced or

resolved and ultimately help increase the degree of certainty associated with the

decomposed components and the overall design of the software solution.

Given the unresolved issue of requirements uncertainty in our example in the

previous chapter, the software executive needs to figure out the development approach to

utilize for the software development effort. After considering several software

 99

development options, the executive decides a stage-gate development approach based on

concepts of both iterative development approaches and standard portfolio modeling

techniques would be the most optimal development approach.

The approach would allow the software executive to partition/decompose the

proposed software into different independent subsystems or components (e.g., the flight

control subsystem and the avionics subsystem) and form a “portfolio” of the subsystems

around the solution space (the software that needs to be developed). By doing this, the

development of the subsystems can begin at the same time using iterative development

techniques to guide each subsystem towards success while at the same time deferring

subsystems that still face requirements uncertainty. The iterative concepts employed

would facilitate shorter feedback cycles by cycling through the development phases, from

gathering requirements to delivering functionality in a working release.

In essence this approach allows the software executive to recast the KC-X

software program as a series of options to start and defer the development of a subsystem

when requirements uncertainty is encountered, reallocate resources and then resume as

uncertainty becomes resolved a strategy which supports the following two propositions

[54].

 Some projects that look attractive on a full investment basis may become even

more attractive if the project is partitioned/decomposed into components because

we are able to reduce downside risk at the lowest possible level.

While we made the assumption that our software investment was attractive in our

example, if we had made the assumption that it was unattractive, the second proposition

below would also hold if we were to adopt the stage-gate-development approach

 Some projects that are unattractive on a full investment basis may be value

creating if the firm can invest in stages.

Therefore by embracing a stage-gate development approach, the executive hopes

to exploit the basic concepts of standard portfolio theory in order to reduce risk by

 100

beginning the development of all the subsystems simultaneously with the hope that most

of them would not be affected by requirements uncertainty and that in case some of them

are affected by requirements uncertainly, the completion of those subsystem can be

deferred until the uncertainty becomes resolved, an approach which is basically an

“Option” on an “Option”, with the options being the Option to Defer and the Option to

Switch. Thus we frame our Real Options as follows:

1) Deferment Options: Option to defer the completion of a subsystem until

more information becomes available

2) Switching Options: Option to switch resources to the development of other

subsystems if the development of a subsystem they are working on has to

be deferred until more information becomes available.

Given the relationship between our options in this case, we can call them a

Compound Option where the value of each option is dependent upon whether the

previous option was exercised or not and could also provide a method of stress testing or

sensitivity testing of the final results by treating the options as alternatives within the

option pricing model [14]. Moving along the lines of our example in the previous chapter,

we can then develop a strategy tree showcasing the options. We assume in our example

that the software executive partitioned the solution space of the proposed software for the

KC-X program into three independent systems capable of functioning independent of the

other systems: the Flight Control system, the Avionics system and the Navigational

system, which we denote as component A, B and C respectively, and assume that the

development of all of these component start simultaneously. In the event that the

development of any component needs to be stopped due to requirements uncertainty, our

proposed uncertainty elicitation model in Chapter III (Figure 9) could be applied to

attempt to resolve the uncertainty. This approach is useful in that it might also help

identify requirements that had not been considered but have been uncovered due to the

partitioning of the proposed software. Consequently we can develop a strategy tree based

on seven possible strategies. The strategy tree is given in Figure 33 on the next page.

 101

Exit

Switch back to development of
 component A when uncertainty is
 resolved and reallocate resources
 back from component B and C
to A

Phase III

Stop after phase III

Phase II

Allocate resources from
component A to develop
 component B and C

Exit

Do Nothing

Strategy A

Uncertainty In
 component A

Phase I
Continue development
of B and C and defer
Component A

Do Nothing

Exit

Exit

Switch back to development of
 component B when uncertainty is
 resolved and reallocate resources
 back from component A and C
to B

Phase III

Stop after phase III

Phase I
Continue development
of A and C and defer
Component B

Do Nothing

Exit

Phase II

Allocate resources from
component B to develop
 component A and C

Exit

Do Nothing

Strategy B

Uncertainty In
 component B

Phase II

Allocate resources from
component A and B to develop
 component C

Exit

Do Nothing

Exit

Switch back to development of
 component A and B or A or B when
uncertainty is resolved and
reallocate resources back from
C accordingly

Phase III

Stop after phase III

Strategy C

Uncertainty In
 component C

Phase I
Continue development
of A and B and defer
Component C

Do Nothing

Exit

Phase II

Allocate resources from
component C to develop
 component A and B

Exit

Do Nothing

Exit

Switch back to development of
 component C when uncertainty is
 resolved and reallocate resources
 back from component A and B
to C

Phase III

Stop after phase IIIStrategy D

Uncertainty In
 component A and B

Phase I

Continue development
of C and defer
Component A and B

Do Nothing

Exit

Strategy E

Uncertainty In
 component A and C

Phase I
Continue development
of B and defer
Component A and C

Do Nothing

Exit

Phase II

Allocate resources from
component A and C to develop
 component B

Exit

Do Nothing

Exit

Switch back to development of
 component A and C or A or C when
uncertainty is resolved and
reallocate resources back from
B accordingly

Phase III

Stop after phase III

Strategy F

Uncertainty In
 component B and C

Phase I

Continue development
of A and defer
Component B and C

Do Nothing

Exit

Phase II

Allocate resources from
component B and C to develop
 component A

Exit

Do Nothing

Exit

Switch back to development of
 component B and C or B or C when
uncertainty is resolved and
reallocate resources back from
A accordingly

Phase III

Stop after phase III

Strategy G

Uncertainty
in A B and C

Phase I
Repartition Software Solution Space

Do Nothing

Exit

Start development of
components
A, B and C

simultaneously

Figure 33. Strategy Tree depicting strategic pathways for the Software
Executive. Real Options framework around the KC-X software

program and shows the different strategies the software
executive or the decision maker can adopt to hedge risk in order

to mitigate cost and schedule overruns.

 102

G. ANALYSIS OF STRATEGIC OPTIONS

Strategy A calls for the development of components B and C (Avionics system

and the Navigational system) and deferring the development of component A (Flight

Control system) using a “deferment option” until the uncertainty is resolved in

component A. In this strategy, the resources that were initially allocated to component A

are reallocated to components B and C using a “switching option” during the period of

uncertainty resolution and are then allocated back to component A using a “switching

option” once the uncertainty in A is resolved .

Strategy B calls for the development of components A and C (Flight Control

system and the Navigational system) and deferring the development of component B

(Avionics system) using a “deferment option” until the uncertainty is resolved in

component B. In this strategy, the resources that were initially allocated to component B

are reallocated to components A and C using a “switching option” during the period of

uncertainty resolution and are then allocated back to component B using a “switching

option” once the uncertainty in B is resolved .

Strategy C calls for the development of components A and B (Flight Control

system and the Avionics system) and deferring the development of component C

(Navigational system) using a “deferment option” until the uncertainty is resolved in

component C. In this strategy, the resources that were initially allocated to component C

are reallocated to components A and B using a “switching option” during the period of

uncertainty resolution and are then allocated back to component C using a “switching

option” once the uncertainty in C is resolved .

Strategy D calls for the development of component C (Navigational system) and

deferring the development of components A and B (Flight Control system and the

Avionics system) using a “deferment option” until the uncertainty is resolved in

components A and B. In this strategy, the resources that were initially allocated to

components A and B are reallocated to component C using a “switching option” during

the period of uncertainty resolution and are then allocated back to components A and/or

B using a “switching option” once the uncertainty in A, B, or A and B is resolved .

 103

Strategy E calls for the development of component B (Avionics system) and

deferring the development of components A and C (Flight Control system and

Navigational system) using a “deferment option” until the uncertainty is resolved in

components A and C. In this strategy, the resources that were initially allocated to

components A and C are reallocated to component B using a “switching option” during

the period of uncertainty resolution and are then allocated back to components A and/or

C using a “switching option” once the uncertainty in A, C, or A and C is resolved .

Strategy F calls for the development of component A (Flight Control system) and

deferring the development of components B and C (Avionics system and Navigational

system) using a “deferment option” until the uncertainty is resolved in components B and

C. In this strategy, the resources that were initially allocated to component B and C are

reallocated to component A using a “switching option” during the period of uncertainty

resolution and are then allocated back to components B and/or C using a “switching

option” once the uncertainty in B, C, or B and C is resolved .

Strategy G calls for repartitioning the software solution space along alternative

partitions to the current set of partitions (Flight Control system, Avionics system and

Navigational system) to see if there is sufficient information in any single subset to

allocate resources and proceed with development of that subset while exercising a

“deferment option” to wait until more information becomes available about the other

subsets.

Now that we have identified the appropriate options to hedge risk, the question

that arises is how much does the software executive pay for the option? The following

section addresses these concerns.

H. MECHANICS OF OPTIONS VALUATION: OPTIONS PREMIUM

Valuation plays a central part in any acquisition analysis. Options are usually

valued based on the likelihood of the execution of the options. In general, there are three

approaches to valuation, all of which have different outcomes depending upon which

approach is used. These valuation approaches are discounted cash flow valuation/relative

valuation, which are estimates based on the value of an asset by looking at the pricing of

 104

'comparable' assets relative to a common variable such as earnings, cash flows, book

value or sales, and lastly contingent claim valuation.

Since an option represents the right but not the obligation to make an investment,

the payoff scheme to the option-holder is asymmetric and the options are only exercised

if they have a positive value and are left unexercised if worthless [6]. While there are

several methods for computing and valuing real options such as employing the use of

closed-form models, partial differential equations, and the binomial approach. The

binomial approach utilizes risk neutral probabilities elicits a great appeal due to its

simplicity, ease of use and the ability to solve all forms of options (e.g., European,

American).

When a software executive buys a call option, the executive expects that the

benefits derived from the option would translate into cost savings when the option is

exercised in the future because at the time at which the option is bought, the software

executive is fully aware that the money spent on purchasing the option might not be

recovered if the option is not exercised or transferred to another similar government

investment effort since technically speaking the option cannot be sold for profit as a last

resort, since the government is not in the business of making profit, but rather saving tax

payers money. Therefore if the option is not exercised and is not transferred to another

government entity that could benefit from it, the cost of the premium must be factored in

the computation of realized benefits by subtracting the premium (loss) from the projected

realized benefits. On the other hand, the seller of the option has a net credit [55] because

of the premium that was received for the option, since they would always keep the

premium even if the option is never exercised. From a sellers perspective, who more

often than not might be a private or commercial organization, this call option translates

into a cost increase thereby impacting their profits if the option is exercised. Hence, they

receive the option premium as a compensation for their loss.

Several factors affect the value of an option. These factors could range from the

maturity of the option to the volatility of the underlying asset. Since premiums are not

fixed and constantly change, the fluctuations reflect the compromise between what the

buyers are willing to pay for the option and what the seller is willing to receive for the

 105

option with the buyers and sellers being the software executive and contractor

respectively or vice-versa as the situation might warrant at which point an agreement is

reached on the price of the transaction.

Regardless, the options premium has two main components: intrinsic value and

time value, both of which contribute to the valuation of the underlying software

investment. In the case of call options, the call option is said to be “in-the-money” if the

strike price of the call option is less than the current market price, meaning it becomes

optimal for the option holder to exercise the option and benefit from factors such as

realized cost savings in the form of inflation adjusted labor rates between the time the

option was bought and the time the option is exercised. Likewise, in the case of a put

option, if the strike price of the put option is greater than the current market price of the

underlying interest, the put option is also said to be “in-the-money” [55]. If the events

above do not hold, i.e. strike price is less than current market price for the call option or

strike price is greater than current market price for the put option, the option is said to be

“out-of-the-money” and should the strike price equal the current market rates, the option

is say to be “at-the-money”. The amount by which a call or put option is in-the-money at

any given moment is called its intrinsic value and any amount by which an options total

premium exceeds the intrinsic value is the time value portion of the premium [55]. It is

the time value portion of the options premium which is affected by factors such as the

volatility of the software investment.

Figure 34. Relationship between Stock Price and Call Option (From[6]).

Thus in the case that an option is out-of-the-money, the option has no intrinsic

value and the time value is the total option premium. As can be seen from the figure

 106

above depicting the relationship between a call option and the stock (option) price, a call

option’s intrinsic value increases as the stock price increases, but never falls below zero.

This is analogous to a software investment. Since a call option’s time value increases as

stock price volatility increases, so would a call option’s time value increase as the

volatility associated with software investments increase because the longer an option

holder has before expiration, the higher the probability that the value of the overall

software investment will end up above the exercise price, thereby making options with

longer “lives” more valuable than similar options with short lives.

Furthermore the more volatile a stock, the higher the chance that the option will

be profitable as can be seen from Figure 35 below depicting two scenarios, with one

showing an option on a low-volatility stock with a narrow price distribution clustering

around the exercise price and the second showing a similar option on a high-volatility

stock with a wide price distribution. All things equal, then, higher stock price volatility

translates into a higher time value [6].

Figure 35. Scenario A: Low stock price volatility Scenario B: High stock price

volatility (From: [6]).

Given the way an option is valued, we summarize the key points in Table 8 on the

next page.

 107

 Call Option Put Option
In-the-money Strike price of the call option

is less than the current market
price

Strike price of the put option is
greater than the current market
price

At-the-money Strike price of the call option
is the same as the current
market price

Strike price of the put option is
the same as the current market
price

Out-of-the-money Strike price of the call option
is greater than the current
market price

Strike price of the put option is
lower than the current market
price

Table 8. Value of an Option.

I. VALUATION COMPUTATIONAL METHODS

As mentioned earlier, to determine the value of our option created to hedge the

risk presented by the uncertainties surrounding the software investment process requires

the computation of several factors. The basic inputs are the present value of the

underlying asset (S), present value of the implementation cost of the option (X), volatility

(cv), time to expiration in years (T), risk free rate or rate of return in a riskless asset (r)

and are summarized in Table 9 on the next page.

 108

Symbol Real Option on Software
Acquisitions Project

Description

S Value of underlying Asset (Asset
Price)

Current Value of expected cash flows.
(Expected benefits realized from investing in
the software effort (NPV))

K Exercise Price / Strike Price Price at which the created option would be
realized (Investment Cost of investing in
options, which is an estimation of the likely
costs of accommodating changes)

T Time-to-expiration The useful life of the option. (Time until the
opportunity disappears or the maturity date of
the option contract)

r Risk-free Interest Rate Risk free interest rate relative to budget and
schedule (Interest rate on US Treasury bonds)

cv Volatility Uncertainty of the project value and
fluctuations in the value of the requirements
over a specified period of time (Volatility in
requirements, cost estimation and schedule
estimation based on DST of Evidence)

Table 9. Factors Affecting Value of an Option.

Although the Black-Scholes Formula is a more popular option pricing model, its

underlying principle is based on European Call options, a key limitation since it cannot

be used to price American Call options which allow the option holder to exercise the

option any time up to the maturation of the option, hence the need for an alternative

pricing method in the form of the Binomial Lattice.

The binomial lattice approach could be based either on market replicating

portfolios or risk neutral probabilities however the latter is much more easier to perform

[14], since the risk neutral probability approach is simply a type of discrete simulation of

 109

the cone of uncertainty and uses a "discrete-time" model of the varying price over time of

the underlying financial instrument.

So

Su

Sd

Su

Sd

Su

Sd

t = 0t = 0 t = 1 t = 2

Figure 36. Binomial Lattice.
So is the current asset value; the value moves up to Su with probability p and down to Sd

with probability 1-p in any time period.

Option valuation is then computed via application of the risk neutrality assumption over

the life of the option, as the price of the underlying instrument evolves [56]. A binomial

lattice could be graphically represented in its simplest form as shown in the Figure 36

above. It requires two basic computation: the up and down factor denoted by Su and Sd

and the risk neutral probability measure with the up factor being the exponential function

of the cash flow returns volatility multiplied by the square root of time steps (t) (the time

scale between steps) [14]. The risk neutral probability is simply computed as the ratio of

the exponential function of the difference between the risk-free-rate and dividend

multiplied by the time steps, less the down factor, to the difference between the up and

down factors [14].

The binomial lattice approach to option valuation can be described as a three step

process [56].

1) Asset Value tree generation

2) Calculation of option value at each final node

 110

3) Progressive calculation of option value at each earlier node with the value

at the first node is being the value of the option.

A pre-requisite for its application is the existence of at least two lattices with one

lattice representing the underlying asset and the other representing the options valuation.

It could be used to visually describe price movements over time, where the asset value

can move to one of two possible prices with associated probabilities and the precision of

the results is correlated to the number of steps that run in the simulation. Given the

factors that are involved in computing the value of an option using the binomial lattice

approach, the following formulas can be deduced:

Su = e  t …………………………………………………………………...………(20)

p =
SdSu

Sder


)t(

…………………………………………………………………………(21)

Sd = e-  t ……………………………………………………………………………(22)

Therefore moving along the line of our example from the previous chapter, we can

compute these factors based on the volatility of our software project of 0.0012, with a

step size of 0.2 years (one year expiration divided by five steps):

Su = e 0.0012 2.0 = 1.000536800340363

Sd = e -0.0012 2.0 = 0.999463487659644

p =
76596440.9994634803403631.00053680

76596440.99946348)2.0(03.0


e

 = 6.1068396117618535

Subject to the following underlying assumptions:

 The present value of the underlying asset is $305 million

 Implementation Cost is $55 million

 111

 Net Present Value is $250 million

 The risk free rate is the 3.0

 Volatility of our project cv = is 0.0012

 Duration is 12 Months (1 year)

 (We use coefficients of variation as a proxy of standard deviation because it is a relative

measure of the standard deviation expressed as a percentage of the mean.)

For the purposes of our example, we run the Super Lattice Solver 3.0 provided by

Real Options Valuations Inc to compute the value of our option. The first step in the

Super Lattice Solver 3.0 involves the creation of the lattice evolution of the underlying

asset. What the model essentially does is multiply the up and down factors by the present

value of the underlying asset at time zero to create the binomial lattice. Therefore we

multiply the underlying value of the asset ($305 million) by 1.000536800340363 and

0.999463487659644 to get the up and down factors respectively of the lattice. This is

depicted in Figure 37.

Figure 37. Underlying Asset Lattice

The second step in the Super Lattice Solver 3.0 is to create the option valuation

lattice (Figure 38) using the values computed in the lattice of the underlying asset to

generate the value of the option.

 112

This requires two steps, the valuation of the terminal node and the valuation of the

intermediate nodes using a process called backward induction [14].

Figure 38. Option Valuation Lattice

The final node in the lattice represents the expiration of the option and the option

value is simply the intrinsic or exercise value and represents the fair price of the Real

Options with all the nodes leading up to the final node representing the value at a

particular point in time given the evolution in the value of the software to that point. The

terminal values in our lattice are the computed values that occur at maturity, while the

intermediate values in the lattice are the computations that occurs at all periods leading

up to maturity and. All these values are computed using backward induction.

This value basically represents the value of the option if it were to be held as

opposed to exercised at that point. Now it is worth noting the differences between the

different types of call options. With a European option, there is no option of early

exercise, and the binomial value applies at all nodes, for an American option, since the

option may either be held or exercised prior to expiry, the value at each node is: Max

(Binomial Value, Exercise Value), and for a Bermudan option, the value at nodes where

early exercise is allowed is: Max (Binomial Value, Exercise Value); at nodes where early

exercise is not allowed, only the binomial value applies.

 113

Therefore given the values we obtained above, the binomial option valuation

comes out to be $251.63 million. Since the NPV of the investment is $250 million, our

total option value (premium) in this case is $1.63 million.

J. REAL OPTIONS ANALYSIS USING MONTE CARLO SIMULATION

The final step in our methodology is to conduct a RO analysis in order to value

the payoffs associated with our RO. This analysis involves the modeling of the value of

the underlying asset which includes the option premium. We follow the steps outlined

above. However in this case the expected value of the software investment effort is

determined from the mean of the value which is computed after several simulations and

the standard deviation or the variance of the value can be used to value options on the

project.

K. REALIZED REAL OPTIONS FRAMEWORK

All the work we have conducted this far has been aimed at developing the

foundations on which we could now use to establish a RO Framework (Figure 39) for

supporting the strategic decision making associated with software related capital

investments.

1) We begin this process by computing the base case present value of the

software investment effort using the NPV formula we discussed earlier in

this chapter once the operational needs have been identified. Since we are

computing NPV at time = 0, we omit the option premium factor Thus

NPV computation equates as follows:

 NPV =
t
tt

r

MC

)1(

)(




 - I

 (we can choose to refine our asset value using a Monte Carlo simulation)

2) We then proceed to identify the uncertainties associated with the software

investment effort by utilizing our proposed “2T” approach of uncertainty

 114

elicitation from Chapter 3 and feeding these uncertainties into a risk

model. The steps associated with the “2T” approach are as follows:

a) Identify pragmatic uncertainties and associated input drivers.

b) Identify Heisenberg-type and Gödel-like uncertainties and

associated input drivers

c) Quantify and feed the input drivers of both types of uncertainties

into the Risk Simulator provided by Real Options Valuations Inc.

3) We then proceed to measure the risks posed by these uncertainties in the

form of volatility by utilizing the Real Options Inc risk simulator in order

to model the impact of the risks posed by the uncertainties.

4) To “fit” our data, we attempt to identify sources of information that we

could use to better understand these uncertainties and the risks they

present. Specifically we look at both historical data and utilize the Delphi

Method. In the case where historical data is not available, we rely on the

Delphi Method or any other applicable proxies.

5) Once we have gathered a better understanding of the uncertainties based

on the techniques employed in Step 4, we proceed to quantify these

uncertainties based on the risk they pose in order to estimate the volatility

of the software investment program.

6) We then solicit additional evidence from different independent sources

and employ the Dempster-Shafer Theory of Evidence utilizing belief

assignments and the Dempster’s combination rule to combine the evidence

we obtained from our different sources.

7) We utilize the evidence we obtained using Dempster-Shafer Theory to

modify or refine our initial probability estimates obtained from historical

data and obtain a refined volatility estimate of our investment effort.

8) After completing all these steps, we are now ready to conduct our analysis.

 115

9) We begin our analysis of the risks by proceeding to formulate the

appropriate Real Options to hedge against the risks and develop a strategy

tree depicting the strategic pathways.

10) We value the options created in Step 8 using the Binomial Lattice

approach and determine our option premium.

11) We add this value of the option premium to our investment costs to

compute the new asset value using

 NPV =
t
tt

r

MC

)1(

)(




 - I + 

We conduct a RO analysis by using random variations in a Monte Carlo

simulation to model different scenarios as applicable

 116

D
at

a
C

o
ll

ec
ti

o
n

an

d
 P

re
p

ar
at

io
n

P

h
as

e
E

xe
cu

ti
o

n

P
h

as
e

R
is

k
D

et
er

m
in

at
io

n

N
ee

d
s

A
ss

es
sm

en
t

Identify Operational

 Needs
Identify Uncertainties using
Uncertainty Elicitation Model

Uncertainty
Quantification

Factor Option Costs in
Software Acquisition Cost

Estimation

Is Historical data
available

Use historical
data

 Use
Delphi Method

Apply
DST

Evidence

Use
Delphi Method and other proxies

Identify Options needed to
address Uncertainty

Determine Option Premium

Yes

No

Compute Volatility

Stochastic Model

Determine Financial Value of
 Investment

Refine Volatility

Value Options created
to address the Uncertainty

O
p

ti
o

n
s

A
n

al
ys

is

O
p

ti
o

n
s

V
al

u
at

io
n

Final Volatility Estimate

Revise Financial Value of
Investment to

account for volatility

Volatility Needs to
be addressed

In
ve

st
m

en
t

 V
al

u
at

io
n

Execute Options

Contract Award

Uncertainty presents itself
Optimal to

execute Option

End

End

No

No

Yes

Yes

Figure 39. Realized Real Options Framework

Now that we have established our real options framework we attempt to validate

our approach to determine its fit to software-related capital investments.

 117

VI. VALIDATING THE REAL OPTIONS FRAMEWORK

Cost is the value of the foregone option....Unknown

In an attempt to validate our proposed approach, we decided to apply the

framework to the software component (Future Combat Systems Network) of U.S. Army

Future Combat System (FCS). The decision to select this case study as a validation

mechanism was based on the recent nature of the project, the high-risks associated with

software development due to the advanced technologies involved, the challenge of

networking all of the FCS subsystems together so that FCS-equipped units can function

as intended and the associated outcome had a Real Options approach been applied. The

associated key contributions of this chapter are as follows:

A. KEY CONTRIBUTIONS

What we show in this chapter using our Real Options methodology is how the

decision maker can develop a series of “Call Options” which can be incorporated into the

Future Combat Systems Network acquisition contract that would give the decision-maker

the right but not the obligation to exercise the options when the need arises. Essentially

what the decision maker would be doing by embracing our methodology is identifying

and paying for risk up-front at today’s price and taking advantage of cost savings

dependent on if the Call Option is “in-the-money” on the upside that the risks which the

Real Options were created to address presents itself, otherwise the decision maker forfeits

the option. Specifically these cost saving would be realized on “in-the-money” Call

Options in the form of savings on differences in prevailing market labor rates actor in

software development), since at this point in time, the exercise price would be less than

what was paid for the Call Option. We start by providing an overview of the Future

Combat Systems program, the challenges facing the Future Combat Systems Network

and the application of our methodology within the constraints of two assumptions we

make during the application of methodology.

 118

B. FUTURE COMBAT SYSTEM (FCS) OVERVIEW

The concept of the U.S. Army Future Combat System (FCS) was first introduced

in October 1999, by then Chief of Staff of the Army (CSA) General Eric Shinseki in an

attempt to convert all of the Army’s divisions (called Legacy Forces) into new

organizations called the Objective Force with the intent of making the Army lighter, more

modular, and most importantly more deployable [57]. These strategic considerations,

were in line with enhancing U.S. Military operations and allowing US dominance in

future conflicts across a full spectrum of threats in a global context. As part of this

transformation, the Army adopted the Future Combat System (FCS) as a major

acquisition program to equip the Objective Force [57]. Figure 40 below offers a visual

depiction of the FCS. This transformation, due to its complexity and uncertainty, was

scheduled to take place over the course of three decades, with the first FCS-equipped

objective force unit reportedly becoming operational in 2011 and the entire force

transformed by 2032.

Figure 40. FCS Core Systems (From: [58]). Core systems of the Future
Combat Systems depicting the software component (Future Combat

Systems Network) as the “heart” of the overall program.

The vision for the FCS was such that it would consist of four major components:

Manned Ground Vehicles (consisting of 8 platforms), Unmanned Systems (which

includes the Unmanned Aerial Vehicles (UAV), Unattended Systems, and Unmanned

Ground Vehicles (UGV)), FCS Network (the software platform that provides the

 119

communication and automation that creates the battle command environment), and

Soldiers (who are ultimately empowered with the use of robotics and technological

advantages).

The Future Combat System (FCS) when deployed is intended to replace such

current systems as the M-1 Abrams tank and the M-2 Bradley infantry fighting vehicle by

tying together what was initially expected to be 18 manned and unmanned systems via an

extensive communications and information network. However, over the last few years,

this program has been plagued by program development issues with some technologies

advancing quicker than anticipated, others progressing along predicted lines, while still

others experiencing significant delays, and skyrocketing costs, with initial estimates of

the FCS program jumping first from $91.4 billion in 2003 to $127 billion, and now to

over $160 billion [63]. Coupled with the skyrocketing costs, comes the issue of

requirements increase with source lines of code (SLOC) almost doubling from an

estimate 33.7 million SLOC initially, to 64 million SLOC and more recently tripling to

95 million SLOC. While those costs have grown and grown, the list of equipment the

FCS is actually supposed to deliver has been getting shorter, with the number of systems

dropping from 18 to 14. Table 10 shows FCS code measured in source lines of code

(SLOC) from inception until 2007.

Original Estimate

(May 2003)
Estimate as of

Jan 2006
Estimate as of
August 2007

Percentage
Increase

SLOC 33.7 million 63.8 million 95.1 million 182

Table 10. FCS Software Growth Estimates.

C. SOFTWARE COMPONENT: FCS NETWORK

Currently, there are many radio and computer systems using various different

software which makes it difficult to communicate during both peacetime and combat

operations. The intent of the FCS Network is to overcome this issue by enabling leaders

at all levels to see first, understand first, act first, and finish decisively by connecting FCS

 120

platforms to the Soldier at every echelon, from Brigade to Squad while at the same time

giving the ability to integrate communications with other Department of Defense

agencies and US allies [58]. The software component of the FCS program is intended to

provide a communication platform for soldiers to communicate through a wireless

network in near real-time with multiple other “assets” such as hovering drones, remotely

control robots to defuse bombs, firing laser-guided missiles at enemies on the move,

conducting a video teleconference in a tank rumbling about 40 mph in the haze of battle

utilizing the same network at the same time.

The design is based on ensuring the availability of the communication network at

all times so that even if a soldier should lose their connection, the software would

automatically “correct itself,” retrieving the information within seconds without

rebooting by finding and utilizing an efficient mathematical algorithm to reconnect the

soldier. The FCS Network has its own operating system known as the System-of-Systems

Common Operating Environment with over 100 interfaces or software connections to

systems outside FCS. The FCS Network is made up of 5 layers: Sensor/Platform Layer,

Application Layer, Services Layer, Transport Layer, and Standards Layer. These layers

provide diversity in waveform, frequency and environment to ensure there are multiple

paths to transport the data. Each network is tailored to support the specific needs of the

end users. Depending upon the communication configuration most users will be provided

with multiple layers of access. The FCS software is currently being developed in four

discrete stages, or blocks, with each block adding incremental functionality spanning

approximately eight functional areas (command and control, simulation, logistics,

training, manned ground vehicles, unmanned aerial vehicles, unmanned ground vehicles,

and warfighting systems) [64].

D. BENEFITS OF FCS

Besides the operational benefits in terms of tactical advantages and increased

situational awareness, cost savings are expected to be realized from the FCS program

because the new combat vehicles in the FCS are designed to share common hulls and 80

percent common parts. This would manifest into fewer spare parts and streamlined

 121

training and functions of mechanics; instead of needing specialists for a mixed fleet.

Furthermore, the reduced weight of the combat vehicles also translate into reduced airlift

requirements in terms of capacity (Air Force Cargo aircrafts would be able to carry more

combat vehicles due to reduced weight) in the case of operational deployments, which

also translate to reduce wear and tear on Air Force aircraft and fuel requirements. While

the FCS Network is just one component of the overall program, it is the underlying

platform on which the success of the FCS program depends, hence the need to apply a

disciplined approach to its acquisition and development. Before identifying the

challenges facing the FCS Network from both a managerial and technical perspective, we

first we state our key assumptions.

E. ASSUMPTIONS

 Due to data limitations at the level of granularity at which we would have hoped

we made the following two assumptions which we justify later on in this chapter at the

applicable situation.

1) We estimated the future benefits of the Future Combat Systems Network

(Asset Value) under traditional NPV and assumed it was positive (i.e.,

benefits outweigh costs) and, further later on in the study, transposed the

costs of the overall FCS program by making it the cost of the FCS

Network (software component) since detailed breakdown of cost data was

not available for comparables.

2) We assume the independent assessments provided by the Cost Analysis

Improvement Group (CAIG) and the Institute of Defense Analysis (IDA)

include belief assignments. In other words, we assume that an executive,

during the decision making process, is provided not only with a raw set of

the risk factors of requirements creep, integration risk, performance risk,

but with additional measures: belief in the estimation of the risk factors

and certainty of the estimation.

 122

F. TECHNICAL CHALLENGES

To date, the software development component of the FCS Network represents the

largest software development effort in DoD history with a current projection of 95.1

million SLOC providing 95% of the FCS functionality. From the onset, its development

has been plagued by technology maturation issues since most of the capabilities were

conceptual in nature and needed to be demonstrated so that the associated software

requirements developed. Furthermore, while the concepts of the FCS does have its

operational merits, it has been compounded by requirements challenges in which meeting

some requirements has the unintended consequence of working against another

requirement [63].

It is also currently envisioned that the 95.1 million lines of software code of the

FCS program would be based on three categories (Figure 41) new code, reused code, and

commercial-off-the-shelf code (COTS). Given the huge spike in the Source Lines of

Code (SLOC) estimates from 33.7 million in 2003 to today’s estimate of 95.1 million,

there is a high probability that the number of lines of code required for the program

would increase as the Army learns more about the technology and its design concepts.

New
19%

Resused
23%

Commercial of the
Shelf (COTS)

58%

New Resused Commercial of the Shelf (COTS)

Figure 41. FCS Projected Software Lines of Code (in thousands) (From: [58]).

 123

Furthermore, while new software code represents the greatest challenge of all the

three categories of code due to the fact that it has to be written from scratch, it is also

highly speculative that the amount of software code that could either be reused or adapted

(COTS) is inaccurate. Hence these estimates which might be somewhat conservative and

could easily translate to greater time and effort to develop software than is currently

planned therefore resulting in cost overruns.

Currently the FCS warfighter operational requirements stand at 544 which

translates to approximately 11,697 system-of-systems requirements. Of the system-of-

system requirements, 289 have “to be determined” items, 819 have open issues to be

resolved individual system level requirements, resulting in 51,944 system level

requirements [58]. The system level requirements provide the specificity needed for the

contractors to fully develop detailed designs for their individual systems. Figure 42 below

illustrates how the FCS requirements are translated from the warfighter to the individual

systems.

FCS Operational
Requirements

System of Systems
Requirements

System Level
Requirements

Software
Subsystems

Hardware
Subsystems

544 requirements 11,697 requirements 51,944 requirements

Figure 42. Flow of FCS Overarching Requirements to System-Level
Requirements (From: [58]).

The development strategy of the FCS Network is based on the evolutionary

approach as can be seen in Figure 43 in which the practice is to overlap builds more than

the traditional spiral model does, by beginning the requirements phase of the next build

before the testing phase is completed on the previous build so that the next build is ready

for design by the time the former build has completed testing.

 124

Build 0

Build 1

Build 4

Build 3

Build 2

Figure 43. FCS Spiral Development Strategy and Software Life Cycle
Reviews (From: [64]).

However, in the midst of evolving requirements, this approach has caused

developers to interpret and implement changes in requirements well into the design and

code phases, compromising the amount of time allotted for testing. This is not to say that

the requirements should have been defined more quickly, rather, the requirements

instability is amplified by the relative immaturity of the program, coupled with its

aggressive pace, the pronounced overlap of the FCS builds and the cascading effect on

software development [64].

G. MANAGEMENT CHALLENGES

Program costs and schedule concerns driven by technical risks and uncertainty

form the basis of the managerial challenges. From an original modest cost of $92 billion

for the whole program for all 18 systems, the costs of the FCS has skyrocketed to over

$163.7 billion dollars for only 14 of the 18 systems according to Army estimates [64].

Based on the current development and delivery schedule, about 10% of the software

which is considered to be the most difficult part of the development effort by program

officials is planned to be delivered and tested after the early 2013 production decision

which would limit the knowledge available to decision makers at that point [64].

 125

Block Percentage of total Software completed Delivery Date

0 5 Sep-05
1 30 Dec-07
2 61 May-10
3 90 Oct-11

4 100 Oct-13

Table 11. FCS Software Blocks, Percentage of Completion, and Delivery Dates (From: [64]).

Currently, the greatest risks faced by the program, besides the unknown total costs

of the system, stems from concerns that the overall FCS would not deliver the required

capability within estimated resources [61]. Compounding these problems is the lack of a

top-level requirements and architecture definition which in effect leaves system-level

requirements incomplete until the preliminary design review in 2009, which further

affects the accuracy of projected SLOC. Therefore given all the challenges facing the

software component of the FCS program (FCS Network), we summarize our key finding

of sources of uncertainty of the FCS Network based on the current challenges.

H. MANAGERIAL UNCERTAINTIES

As mentioned earlier and depicted in our “2T” model, constraints of people, time,

functionality, budget, and resources form the basis of the uncertainties faced the program

manager. Therefore using this paradigm, based on the information we have gathered thus

far, we can frame managerial uncertainties along two lines: Estimation (size and costs)

Uncertainty and Schedule Uncertainty. We discuss this further.

1. Estimation Uncertainty

Generally speaking, poor size estimation is one of the main reasons that major

software-intensive acquisition programs fail. The overall costs of the FCS Network

program continue to be plagued by estimation difficulties associated with changing

requirements, immature architecture, with the U.S. Army, the Institute of Defense

Analysis and DoD’s Cost Analysis Improvement Group (CAIG) reporting independent

and different cost estimates of $163.7 billion, $166.7 and a range of $203 - $234 billion

 126

respectively. The difficulties associated with accurate software estimating is an indication

that complexity increases as the design is better understood, resulting in the increases in

the level of effort and possible increases in the development schedule, and ultimately

resulting in increased costs. The general consensus as reported in reports authored by the

Government Accountability Office (GAO) is that the Army’s estimates are limited by the

low level of knowledge in the FCS program today since the Army does not have a base of

mature technologies and well-defined system-level requirements. Therefore, the Army

resorts to making significant assumptions about how knowledge will develop [58]. Table

12 below highlights the trend of cost growth from the inception of the program.

 Army Original Estimate Current Estimate
Independent
Cost Estimate

Base year 2003 dollars May-03 Dec-06 May-06
Total $91.4 $163.7 $203.3 - $233.9

Table 12. Comparison of the Original Cost Estimate and Recent Cost Estimates

for the FCS Program (in billions of dollars) (From: [64]).

2. Scheduling Uncertainty

In comparison to the Joint Strike Fighter (JSF) which has only approximately 24

million SLOC [64] with a delivery timeline of 12 years using a similar 5 block

incremental delivery approach, we believe that the FCS Network development schedule

to be too risky as the software development and testing schedules appear to be based on

the paradigm of “development success”, with have little margin to accommodate delays.

Furthermore, in light of the uncertainty surrounding the estimation of the size of the

software, we believe that the schedule does not necessarily or adequately reflect the

potential impact that uncertainty in size could have on the acquisition schedule.

 127

I. TECHNICAL UNCERTAINTIES

There is a preponderance of technical uncertainties surrounding the development

of the FCS Network by virtue of its reliance on the successful development of conceptual

critical technologies. For example, technological maturation issues such as the limitations

associated with wirelessly transmitting still images, video and audio have plagued the

program. Using our “2T” paradigm we frame technical uncertainties along the following

categories: Requirements Uncertainty, Integration Uncertainty, and Performance

uncertainty. We expand on these uncertainties below.

1. Requirements Uncertainty

The lack of adequately defined requirements (Table 13) is one of the leading

problems in the software development effort. Without adequate definition and validation

of requirements and design, software engineers could be coding to an incorrect design,

resulting in missing functionality and errors. This problem is further compounded by the

lack of top-level requirements and architecture definition which in effect leaves system-

level requirements incomplete until the preliminary design review in 2009, further

affecting the accuracy of projected lines of code.

Poorly
defined

requirements
Late

requirements
Missing

requirements
Software Partitions X X

Combat Identification X X X
Battle Command and Mission Execution X X X
Network Management System X X X
Small Unmanned Ground Vehicle X X X
Training Common Components X X X
System of Systems Common Operating
Environment X X

Table 13. Software packages and associated requirements problems (From: [59]).

 128

2. Integration Uncertainty

There are over 100 software vendors involved in the development of software

programs for FCS, including 14 first-tier contractors, and many other sub-contractors

[59]. Due to the amount of contractors involved, there is a lot of uncertainty surrounding

how successful the different components would integrate due to the amount of

collaboration that the effort would involve. This issue is further compounded by the

inherent competition amongst software suppliers and their unwillingness or inability to

share information and rapidly negotiate changes in products and interfaces, which could

lead to missed delivery schedules, significantly reduced operational capabilities, and less

dependable system performance.

3. Performance Uncertainty

Requirements changes, integration issues and late testing pose the risk of that the

FCS Network might not yield fully functional software that performs as desired due to

the complexity and functional scope. Furthermore, security is also a major concern from

an operational perspective, with worries about the possibility of hackers implanting

viruses and malicious code, thereby increasing the possibility of software failure when

fielded in an operational mode.

Based on the uncertainties we have identified thus far, we can summarize the risks

affecting the value of the FCS Network as being:

1. Requirements Creep

2. Estimation Accuracy (size and cost of the software)

3. Performance Risk

4. Software Integration

With this information in hand we now searched for historical data on a similar

software development (size and scope) effort as the FCS Network that exhibits the same

risk factors as the FCS Network effort. In this case we chose to select the Joint Strike

Fighter program (JSF).

 129

J. BASIS FOR SELECTING THE JOINT STRIKE FIGHTER PROGRAM

In our examination of historical data, we were able to determine that the historical

data presented by the JSF program closely reflected the risks and challenges faced by the

FCS program. Hence we elected to compare the JSF program to the FCS program for the

following reasons.

1. JSF Technology Maturation Risks

Requirements instability perpetuated by technology maturation issues plagued

the JSF program from the onset just like the FCS program, with only two of the JSF’s

eight critical technologies being fully mature and three other technologies being

immature even after design review had been completed. This is a similar situation to the

FCS program where only two of the program’s 44 technologies are fully mature and 30

are nearing full maturity. Maturing critical technologies during development led to cost

growth in the JSF program and is also the case in the FCS program.

Figure 44. FCS Program Management (From: [62]).

 130

Figure 45. JSF Program Management (From: [62]).

2. JSF Program Management (Cost Risks)

The JSF and FCS contracts were both awarded on a cost reimbursable basis for 12

years. These contract vehicles allowed payments to the contractors on the basis of time

spent on the project at pre-determined man-hour rates rather than a firm fixed price.

Hence, the risk for all cost growth over the estimated value rests with the DoD. As of

fiscal year 2007, DoD anticipates having to reimburse the prime contractors on these two

programs nearly $13 billion more for their work activities than initially expected [62].

3. JSF Software Size (SLOC)

The JSF program represents the second largest software-intensive program behind

the FCS. Figure 46 and Table 14 below highlight the SLOC, and cost and development

schedule for the JSF.

 131

JSF and FCS SLOC Comparison

22.9

95.1

0 10 20 30 40 50 60 70 80 90 100

Joint Strike Fighter

Furture Combat System

SLOC (Millions)

Figure 46. SLOC of Historical Acquisition programs of

 Software-Intensive-Weapons Systems.

Program
Inception
November
1996

System
development
start (October
2001)

Program
Rebaseline
(December
2003)

Data as of
December
2005

Cost Estimates
(Then Year $ in
billions)
Development $24.8 $34.4 $44.8 $44.5

Estimated Delivery
Date
First Operational
Aircraft delivery 2007 2008 2009 2009

Table 14. Joint Strike Fighter Cost and Schedule Increases from program inception.

Our goals and objectives in utilizing the JSF historical data is to investigate,

analyze and incorporate any lessons learned in the JSF program since development of the

JSF began prior to the FCS.

K. RISKS IMPACT ON FCS NETWORK

In software development, requirements instability have been found to have a

profound impact on a program’s schedule and drive up costs due to Research,

Development, Test & Evaluation (RDT&E) costs increases associated with the

requirements changes. Therefore, given the situation with the FCS Network, we can

depict the relationship between the risks as follows.

 132

Figure 47. Impact of Risk on FCS Network.

Given the impact that requirements instability has on costs, we attempt to

determine the rate of change of requirements or the volatility of requirements. To

accomplish this, we utilize the Caper Jones’ approach which is a transposition from the

financial industry. Jones asserts that the method of average percentage of change of the

overall requirements volume lacks information, because it does not give any information

on the time in which the change occurred, a key factor that is important to determine in

software engineering, since requirements changes become more expensive to implement,

the farther we are into the software development process.

Jones therefore uses the compound monthly requirements volatility rate [67] to

express the time aspect. Calculating monthly requirements volatility rates, as defined by

Jones, is a transposition from the financial world. The time value or future value of

money is well-known in the field of accounting as compound interest or CAGR, short for

compound annual growth rate. By transposing from compound growth rate in finance we

assume that requirements are compounded within a project [67]. The basic financial

equation is given as follows:

 133

1001 







 t

tSizeAtStar

SizeAtEnd
r

which translates to

1001 







 t

tSLOCAtStar

SLOCAtEnd
r

where t is the time period in years during which the estimates were observed

However, SLOC is not a suitable proxy for measuring requirements volatility

because more often than not, it is dependent on the type of programming language being

used and also does not take COTS into consideration, which represents a sizeable portion

of the FCS program. Ideally we would have preferred to use an alternative proxy such as

Function Points, which is a better metric for the size of the software requirements

irrespective of how the software will be developed. However due to lack of data to

determine the number of Function Points associated with the FCS Network program, we

resorted to use SLOC to demonstrate our approach in determining requirements volatility.

Note that the same approach can be used to determine requirements volatility using

Function Points if we had information on the number of Function Points in the FCS

program at the time of our study.

We compute the requirements volatility of both the FCS Network and the

software component of the JSF using the SLOC data, and summarize the information we

have thus far in Table 15, and compute the volatility of requirements using the formula

above.

Program (Period) Beginning SLOC (Millions) Ending SLOC (Millions)
FCS (2003 – 2008) 33.7 95.1

JSF (2001 – 2008) 17.2* 22.9

Table 15. Comparison between JSF and FCS SLOC

*We estimate the initial SLOC of JSF program by utilizing the average of 25% increase
in requirements reported by GAO in their assessment of selected weapons systems [62]
and determine the initial SLOC estimate of the JSF to be 17.2 million SLOC

 134

Program Beginning SLOC (Millions) Ending SLOC (Millions) r (Volatility)

FCS (2003 – 2008) 33.7 95.1 12.37754868

JSF (2001 – 2006) 17.2 19*
0.282516275

Table 16. Volatility computation using Caper Jones approach.

*We utilize the SLOC of 19 million as reported in GAO assessments in 1996. We utilize
this value because the FCS Network growth reported in this table is based on a 5 year
period of SLOC growth, hence our need to size the JSF program accordingly as it
represents a 5 year period of SLOC growth

We further estimate that over the 5 year period of observation depicted in Table

15, the FCS Network was 5.0 times the size of the JSF program (i.e. 95.1/19). Therefore,

to adequately size the JSF program, we multiply its current volatility by 5 and get a

resulting volatility estimate of requirements of 1.440833

In comparison with the averages reported by Jones’ research on industrial

averages (Table 17), we can see that requirements volatility in the FCS Network exceeds

traditional averages of military software, making it a risky venture that is approaching the

“out of control” category.

Software Type
Average

volatility (%)
Maximum volatility

(%) Out of control (%)
MIS Software 1.2 5.1 > 5
Systems Software 2 4.6 > 5
Military software 2 4.5 > 15
Commercial software 2.5 6 No info
Civilian government software 2.5 No Info No info
Web-based software 12 No Info No info

Table 17. Caper Jones’ industry averages and maximum rates in various

 industries (From: [67]).

Since the SLOC estimates of the FCS program are nearly 5 times that of the JSF

program, we extrapolate the JSF data to mirror that of the FCS program using our Risk

Simulator modeling toolkit. We first determine the value of the FCS Network as after all,

the intent of running a Monte Carlo simulation is to determine the volatility of the returns

on the FCS Network based on the modeled risks.

 135

L. VALUATION OF THE FUTURE COMBAT SYSTEMS NETWORK

In order to value the FCS Network, we need to use a financial model and the

development of the financial model requires that we either have or compute the

following four factors.

1. Costs of developing the Future Combat Systems Network

2. Quantifiable benefits

3. Discount Rate

4. Time period

As of 2008, the overall FCS program cost was estimated at $163.7 billion [59],

with the software component alone providing provides 95% of the FCS functionality

[65]. Furthermore determining the discount rate and the time period is quite simple as this

information is readily available. For discount rate, we use the spot rate on the U.S.

Treasury bill and a time period of 10 years reflects the software development/delivery

schedule.

However quantifying the benefits of the FCS Network in terms of a monetary

value is a very complicated task. While the U.S. Army provides guidance on quantifying

benefits based on factors such as cost savings, cost avoidances and productivity

improvements, the numeric benefits cannot be easily estimated. Even though the overall

FCS program would feature affordable sustainment costs, reduced logistics requirements,

and a decrease in crew size as compared to the current systems as gathered from the

initial justification for investment in the FCS program, we did not have sufficient data

that reflected these benefits in the form of cost savings or cost reduction at the time of our

study. To compound this, it is very difficult to proportionately allocate the cost savings to

the FCS Network. Although the FCS Network is a critical component of the overall FCS

program, these cost savings cannot be allocated to the FCS Network alone because the

FCS Network is just a technology platform providing the underlying functionality of the

overall FCS program, with many other components such as lighter manned vehicles

contributing to the cost savings.

 136

Consequently we make an assumption, the first of two assumption we make

during the validation of our approach.

1. Assumption 1

We assume that the benefits could far exceed the costs under traditional NPV

analysis or with the goal is to manage the development (investment) costs within the

constraints of the given budget without reducing required functionality.

2. Justification

We believe this to be a reasonable assumption because of the perceived benefits

obtained over an extended time period in the form of cost savings due to the replacement

of legacy systems, vehicles and the tactical advantages the troops on the battle field

would enjoy.

We take the approach that the regardless of the future benefits provided by the

FCS Network, the value is derived based on how much we can successfully manage the

software development or investment costs so that we can maximize the returns of the

investment by keeping costs low via successfully planning and paying a risk premium up

front for risks. In other words, we take an investment cost management approach towards

maximizing future returns.

Since the government model is to provided the needed capability at least cost to

the taxpayer, our focus on “managing” the investment costs to make sure that we do not

overrun the costs and therefore maximize returns. Furthermore in actuality, since the

program is currently underway, we can say with 100% certainty that a financial model, a

pre-condition for the application for Real Options, was developed before the

commencement of the acquisition effort.

 137

Based on this underlying assumption we claim that under traditional NPV

analysis, the NPV of the FCS Network using our formula below is positive.

NPV =
t
tt

r

MC

)1(

)(




 - I

I is the (initial) development cost and represents

T is the (initial) development time or time to market,

C is the asset value and represents the total value of the positive cash flows that the

project is expected to generate during its lifetime,

M is the operation cost and is the total value of all negative cash flows of the operation

phase, calculated at time T.

(C –M) is always positive

r is the rate at which all future cash flows are to be discounted (the discount rate).

3. Assumption 2

For cost estimation purposes we assume that the overall FCS program is software,

therefore we use the costs of the overall FCS program in our computation.

Thus based on our assumptions, we develop our financial model to mirror a

positive NPV based on the following key input factors

I = $163. 7 billion

T = 13 years

r = 3.0 %

C – M = $10 trillion

Since we did not have detailed data, we assume an asset value of $10 trillion and

operating cost of $0. Based on these values, we are able to compute the NPV of the FCS

Network as being approximately $6.4 trillion as shown in Table 18.

 138

Table 18. NPV of FCS Network.

4. Rationale for Assumption

We assume these cost estimates reflect the estimates of the FCS Network as

opposed to the overall FCS program for the purposes of our study since we cannot clearly

delineate between software costs and hardware costs from the inception of the program.

We therefore treat the overall FCS program as consisting of “software only” for cost

purposes and assume the overall costs of the FCS Network is the cost of the overall FCS

program. By doing this we can then develop a model based on the following:

Value of Army’s overall FCS cost estimates = Army’s FCS Network estimate

Value of CAIG’s overall FCS cost estimates = CAIG’s FCS Network estimate

Value of IDA’s overall FCS cost estimates = IDA’s FCS Network estimate

We made these assumptions because at the time of our study, we did not have

access to the detailed data of both IDA’s and CAIG’s estimates of only the FCS Network.

The data we reviewed at the time of our study did not provide information at the level of

detail that was beneficial to our study, consequently we were not able to isolate the FCS

Network (software component) from the overall FCS program based on their independent

CAIG’s assessment. Therefore, for the purposes of validating our framework, we assign

the values of the overall FCS program provided by the Army, IDA and CAIG as our

software development/investment costs. In other words we now assume that the estimates

provided by the Army, CAIG and IDA of $163.7 billion, $218.5 billion (average of range

provided) and $166.7 billion respectively represent the costs of the FCS Network

investment.

 139

Now that we have addressed the issue of asset valuation, we proceed to model our

risks and determine the volatility of the returns on the investment using our modeling

toolkit.

M. VOLATILITY DETERMINATION

Based on the uncertainties we have identified thus far, we now feed risks into our

risk model in the Risk Simulator (Table 19) to observe the impact on the value of the

future returns on the overall FCS program using the JSF program as a proxy in our data

fitting. Based on our computation volatility of each of the risk factor we identified using

the Caper Jones’ approach, we are able to develop probability estimates, and run a Monte

Carlo simulation. Since we are dealing with random quantities which are positive in

nature and whose values cannot fall below zero we select the lognormal distribution

which utilizes the following four mathematical constructs to compute four key measures

known as “moments” (returns, risk, skewness and kurtosis) of our logarithm distribution

These measures are computed using the following formulas as outlined in chapter IV of

this study.

f(x) = 2)][ln(2

2)]ln()[ln(

)ln(2

1 







x

e
x

 for 0,0;0  x

mean = exp 









2

2

standard deviation =]1))[exp(2exp(22  

skewness =  ))exp(2(1)exp(22  

excess kurtosis = exp 6)2exp(3)3exp(2)4(222  

 140

The model is run and the simulation calculates numerous scenarios of the model

by repeatedly picking values from the lognormal distribution for the uncertain variables

using the values in the model.

Table 19. Screen capture of risk model developed in the Risk Simulator.

Figure 48. Risk Simulator output depicting returns on a

$163.7 billion Investment in the FCS Network. The frequency histogram shows the
frequency counts of values occurring in the total number of trials simulated. The
vertical bars shows the frequency of a particular NPV occurring out of the total

number of trials, while the cumulative frequency depicted by the smooth line shows
the total probability of all values at and below the maximum NPV occurring in the

forecast.

 141

Figure 49. Volatility of the returns on the $163.7 billion Investment
in the FCS Network. The forecast statistics summarizes the distribution of the forecast

values in terms of the four moments of a distribution.

In Figure 49, we observe that the volatility of the returns associated with the FCS

Network investment, as indicated by the correlation of variation, has a value of 0.0866,

and there is a decrease in the NPV from $6.4 trillion to $6.1 trillion, a direct reflection of

the risk factors of requirements volatility, integration volatility, schedule overrun,

performance risk and software cost estimation risk which we factored into our valuation

of the FCS Network.

We use coefficients of variation as a proxy of standard deviation because it is a

relative measure of the standard deviation expressed as a percentage of the mean. Even

though we have identified five possible risks as being the key contributors to the

volatility of the returns of investing in the FCS Network, we model only the requirements

risk and attempt to determine that, given the volatility of requirements, how does this

impact the schedule and consequently affect the value returns of the FCS Network.

Next we attempt to refine our volatility estimates using Dempster-Shafer Theory.

Since a key proposition of Dempster-Shafer Theory is that all sources of information be

independent, we satisfy this proposition by utilizing independent estimates provided by

the Cost Analysis Improvement Group (CAIG) [64] and Institute for Defense Analysis

(IDA) [59]. We review the background of both organizations in the next section.

 142

N. BACKGROUND OF THE EXPERTS

The Institute for Defense Analyses (IDA) is a non-profit organization first

established in 1947 responsible for providing independent technical analyses of weapons

systems and programs. They administer three federally funded research and development

centers to provide objective analyses of national security issues, particularly those

requiring scientific and technical expertise, and conduct related research on other national

challenges. The second independent entity, the Cost Analysis Improvement Group

(CAIG) was formed at the behest of the Deputy Secretary of the Department of Defense.

In 2006, the deputy secretary issued a policy directive (5000.04) directing that any Major

Defense Acquisition Program (MDAP) undertaken by the DoD undergoes an independent

review and assessment. As an objective entity in Office of the Secretary of Defense, the

CAIG was identified as the independent body responsible for conducting independent

cost assessments of Major Defense Acquisition programs and serving as the principal

advisor on matters of program life-cycle cost.

O. REFINING VOLATILITY USING DEMPSTER SHAFER’S THEORY

To compute the volatility of FCS Network based on the risks identified above, we

first establish the frame of discernment  which consists of the set of mutually exclusive

alternatives or possibilities these risks pose to the FCS Network. In the case of CAIG,

they provide a range of $203 - $234 billion for their estimate, thus we take the average to

reflect the median ($218.5 billion) of their estimate. The IDA, on the other hand, provides

an estimate that is $3 billion over the Army’s estimate. An important point worth

mentioning is that the Army does not agree with both assessments as program officials

believe that the independent estimate of research and development costs is too high

because it is too conservative regarding risks [64].

We summarize the independent estimates provided by both organizations in the

Table 20 below.

 143

Source of Assessment
FCS Estimates

(billions)
Army $163.7
Cost Analysis Improvement Group $218.5
Institute of Defense Analysis $166.7

Table 20. Summary of the three independent estimates of the FCS program

The first step in application of DST is to establish belief functions. To accomplish

this, we examined the primary differences between the CAIG estimate, IDA estimates

and the Army’s estimates. CAIG’s estimate appeared to be the most conservative

estimate. They determined that the FCS software development would require more time

and effort to complete than the Army had estimated, resulting in several additional years

and additional staffing beyond the Army’s estimate to achieve initial operational

capability [64]. IDA found that Army plans for developing FCS, including the network,

were optimistic with regard to time and money needed for the program and therefore

projected at least $3 billion in additional FCS development costs due to unplanned

software effort including code growth, software integration difficulties, and longer

development schedules [59]. However based on our studies, it appeared the general

consensus was that there was no question regarding the issue of requirements volatility.

In other words, based on our assessment of GAO reports, we were led to believe that the

probability of requirements creep was fairly consistent across all sources. Therefore,

while the probability of schedule impacts might be debatable across all the different

estimates, the probability of requirements creep was the same.

We now establish the frame of discernment for both the CAIG’s and IDA’s

assessment of the FCS Network based on the set of the risk factors affecting the

investment as follows:

 = {SE, SR, SI, SS, FP}

where

Estimation Accuracy Risk (SE) - Under/overestimation risk

Requirements Creep Risk (SR) - Requirements volatility risk

 144

Software Integration Risk (SI) - Integration risk

Delivery Risk (SS) - Risk of schedule overruns

Performance risk (FP) - Risk of software not meeting user needs

 CAIG Belief functions are as follows3:

Bel({SR}) = 0.90

Bel({SR, SE}) = 0.90 + 0.08

Bel({SR, SE, SI, SS, FP}) = 1

We assign Bel({SE}) the next highest probability assignment because the effects of

requirements creep on the cost estimation of the FCS Network.

The belief functions were based on the masses of evidence gathered as follows

m({SR}) = 0.90

m({SR, SE}) = 0.08

m({SR, SE, SI, SS, FP}) = 0.02

Similarly we come up with the following Belief assignments based on IDA’s

assessment using the same analogy above.

Bel({SR}) = 0.95

Bel({SR, SE}) = 0.95 + 0.03

Bel({SR, SE, SI, SS, FP}) = 1

m({SR}) = 0.95

m({SR, SE}) = 0.03

m({SR, SE, SI, SS, FP}) = 0.02

3 To determine CAIG’s subjective probability assignments on the Army’s estimate, we need to examine the mass of
evidence that CAIG is able to gather to either validate or discredit the Army’s estimate. Since this information was not
explicitly available at the time of this study, we resort to a different approach for illustrative purposes.

 145

 We now attempt to combine the information we have so far. I.e., CAIG’s

assessments and IDA’s assessment by computing the orthogonal sum in the form m = m1

m2 where m1 (CAIG) and m2 (IDA) represent the basic probability on our frame of

discernment . (Table 21)

Table 21. Screen capture of orthogonal matrix.

We obtain the following Evidence Functions

m1m2 ({SR}) = 0.855 + 0.076 + 0.019 + 0.027 + 0.018 = 0.995

m1m2 ({SR, SE}) = 0.0024 + 0.0006 + 0.0016 = 0.0046

m1m2 ({SR, SE, SI, SS, FP }) = 0.0004

To examine the degree of conflict we revisit Eqn 17 above depicted as:

m12(A) = 
 ACB

21

1

)C()B(

K

mm
when A  Ø

where

K = 
 ØCB

21)C()B(mm

However since we have no null intersections, the sum of all such sets is in our matrix in

Table 21 is equal to 0. Therefore 1 – K = 1

The plausibility (certainty) of these beliefs are computed based on the following doubt

functions

Dou({SR, SE, SI, SS, FP}) = Bel (Ø) = 0

Dou({SR, SE}) = Bel (SI, SS, FP) = 0

 146

Dou({SR }) = Bel (SE, SI, SS, FP) = 0

Thus plausibility is as follows:

Pl({SR}) = 1- Dou({SE, SI, SS, FP}) = 1

Pl({SR, SE }) = 1- Dou({SI, SS, FP}) = 1

Pl({SR, SE, SI, SS, FP}) = 1- Dou({SR, SE, SI, SS, FP}) = 1

We can establish the following joint beliefs

Joint Belief of Independent expert #1 and #2 estimates in {SR} is 0.995

Joint Belief of Independent expert #1 and #2 estimates in {SR, SE} is 0.9996

Joint Belief of Independent expert #1 and #2 estimates in {SR, SE, SI, SS, FP} is 1

Since SR is the dominating risk factor within the context of our assumptions, the

joint belief in SR of 0.995 infers that both CAIG and IDA have similar if not exact beliefs

on the question at hand regarding SR.

The next step in the analysis is to determine the “direction” of the belief. For the

purposes of our study, we assume that the DST results imply a 99% degree of belief that

the Army underestimated the risk of requirements creep, and infer that requirements

volatility is actually 20%4 based on both the CAIG and IDA’s estimates as opposed to the

12% volatility value determined by the Army

Consequently with the belief that an increase in requirements risk would

adversely impact cost and schedule estimation, we readjust the risk factor off

requirements volatility by increasing the probabilities of its occurrence by 8% in our

model. (20% - 12%) and assign readjust the other risk factors of (SE, SS, SI, FP) such

that there sum is 1.

4 While our assumption of the risk of requirements increases is consistent with the findings of both the CAIG and

IDA as reported in their testimony to Congress based on the cost estimates provided by the Army, we further assume in
this study that the preponderance of evidence gathered by both independent experts served as a basis for determining a
20% volatility based on the proportionate recomputation of all the other risk factors surrounding the FCS program such
that the sum is of the probabilities of all the other risk factors is 1 or 100%.

 147

 We rerun a Monte Carlo Simulation and as shown in our model (Table 22).Our

new results are depicted in the new output charts:

Table 22. Screen capture of risk model developed in the Risk Simulator with revised estimate.

Figure 50. Risk Simulator output depicting revised returns on a $163.7 billion
Investment in the FCS Network with revised probability estimates.
The frequency histogram (Figure 49) shows the frequency counts of
values occurring in the total number of trials simulated. The vertical
bars shows the frequency of a particular NPV occurring out of the

total number of trials, while the cumulative frequency depicted by the
smooth line shows the total probability of all values at and below the

maximum NPV occurring in the forecast.

 148

Figure 51. Revised volatility of the returns on the $163.7 billion Investment in
the FCS Network. The forecast statistics summarizes the distribution
of the forecast values in terms of the four moments of a distribution.

In comparing our new volatility estimates of 0.09477 to the previous volatility

estimate of 0.0866, we observe that the volatility of the returns on the FCS Network

increased, while the returns of our investment declined from $6.1 trillion to $5.7 trillion -

a direct consequence of the increase in volatility of our investment effort. Therefore given

the volatility of the returns on the FCS Network investment the decision-maker with

executive oversight on the FCS Network needs to develop and incorporate the

appropriate Real Options. We now proceed to formulating our Real Options.

P. IDENTIFYING OPTIONS

Now that we have determined the volatility of the returns of the FCS Network, we

develop Real Options to address the risk factors we have identified so far. The strategy

taken is that in the light of requirements uncertainty which is beyond the control of the

program manager or executive, how does s/he decrease costs or how do they stay within

the authorized budget. We therefore recast the FCS Network development effort as a

series of Deferment/Learning Options and Investment/Growth Options during which the

Option to Start, Stop, and Options to scale up staff and scale down staff or defer

development in the face of requirements uncertainty is utilized. This whole strategy is

 149

based on reallocating resources based on the periods of lulls in software development

activities based on uncertainties, i.e. maximizing resources (e.g. staff). This concept is

based on a stage-gate development approach utilizing the concepts of both iterative

development approaches and standard portfolio theory. Its success relies on the

successful and correct partitioning/decomposition of the FCS Network into the

appropriate subsystems which the Army appears to have done already. We therefore

partition the FCS Network solution into the six independent systems as identified in

Table 13 above as follows:

1) Combat Identification

2) Battle Command and Mission Execution

3) Network Management System

4) Small Unmanned Ground Vehicle

5) Training Common Components

6) Systems of Systems Common Operating Environment

If further partitions of each of these subsystems are warranted, they should be

developed accordingly. Now that we have our FCS Network “portfolio” of all the

required systems, to the extent possible, development of each system can begin at the

same time, using iterative development techniques to guide each system towards success

while at the same time deferring systems that still face requirements uncertainty. The

iterative concepts employed would facilitate shorter feedback cycles by cycling through

the development phases, from gathering requirements to delivering functionality in a

working release.

Since there are six possible software systems, we examine the 63 possible

combinations of one or more components may have uncertainties in them at the same

time, resulting in a strategy tree based on 63 possible strategies.

Rather than develop a complicated strategy tree showing our 63 strategic

pathways, we examine one possible scenario with two different strategic options.

 150

1. Scenario

All six systems are facing uncertainty with the exception of one system. That is, at

least one system out of the six systems is not facing requirements uncertainty. We

therefore develop two types of options in response to this scenario 1) Compound option

2) Deferment Option

a. Compound Option

 In the event that at least one of the systems is not facing requirements

systems, with all the others facing requirements uncertainty, an option could be

developed to “scale down” the resources (staff) allocated to the other systems. The staff

could then be switched to work on the system that is not facing requirements uncertainty,

while the uncertainty is addressed using our uncertainty elicitation model. The

assumption with this approach is the system development effort which the staff engineers

are being reallocated to work on is not already behind schedule and hence does not

violate Brooks Law5). If the development effort which the staff are being assigned to

work on is late (behind schedule), the number of staff, experience level and role which

the added staff would play in the software development effort must be taken into

considerationWe therefore frame the Real Options in this case as:

To illustrate the reasoning behind the development of our Real Options “Option to

Scale down from a system with uncertain requirements, Option to Switch resources to

another system, Options to Scale up staff assigned to the development of a system not

facing uncertainty we use an analogy based on the concept of “switching lanes” on a

highway.

When a driver feels a lane is going too slow, he has the option to switch to the fast

lane. However this option comes with a premium in form of faster burn rate of fuel and

training associated with being able to drive in the fast lane in order to keep up with the

moving traffic. The driver remains in the fast lane until he runs into another driver ahead

5 Brooks law states that adding people to a late project makes it later.

 151

of him, slowing down the traffic. He then exercises his option to switch back to the slow

lane.

In the case of the FCS Network, by relocating resources from unsuccessful

systems (systems facing significant uncertainty) to “successful” systems, i.e. systems not

facing requirements uncertainty, the development of the successful systems could be

accelerated based on the increased level of effort. Granted previous research by Robert

Glass has shown that this might not be the best way to accelerate delivery (i.e. by

throwing bodies to project), we explicitly acknowledge this by developing a “Switching

Option” that acknowledges the costs that might be incurred in the logistics related to

training and reassigning staff to the successful systems.

Therefore given our approach in this scenario, what we have essentially done is

develop a “Sequential Compound Switching Option”, an “Option” on a “Option”.

b. Deferment Option

 In the event that five of the six systems are facing requirements

uncertainty, another option could be developed to stop and defer all development until

uncertainty is resolved in the single system. What we have essentially done is develop a

Deferment Option.

Now that we have determined the appropriate Real Options, our next step is to

develop a strategy tree depicting the strategic pathways. As mentioned in the previous

chapter under the partitioning (decomposition) of the software solution, the success of

these strategies hinges on the following.

The software solution has been partitioned (decomposed) properly, taking into

consideration uncertainty both within the subsystem and across the subsystems

and uncertainty either reduced to lowest level possible or resolved using modeling

and simulation tools as advocated for in our discussion.

We depict our strategy tree in Figure 52.

 152

Q. STRATEGY TREE OF COMPOUND AND DEFERMENT OPTIONS

Start development
 of FCS
Network

Phase 1

Continue development
of System of Systems

Common Operating Environment

Defer

1) Combat Identification
2) Battle Command and Mission Execution

3) Network Management System
4) Small Unmanned Ground Vehicle
5) Training of Common Components

Exit

Do Nothing

Phase 3

Switch (allocate) resources
 from

System of Systems Common Operating
 Environment

to
1) Combat Identification

2) Battle Command and Mission Execution
3) Network Management System

4) Small Unmanned Ground Vehicle
5) Training of Common Components

as
Uncertainty becomes resolved in

any of the 5 components

Phase 2

Switch (allocate) resources from

1) Combat Identification
2) Battle Command and Mission Execution

3) Network Management System
4) Small Unmanned Ground Vehicle
5) Training of Common Components

to

System of Systems Common Operating
 Environment

Defer

1) Combat Identification
2) Battle Command and Mission Execution

3) Network Management System
4) Small Unmanned Ground Vehicle
5) Training of Common Components

6) System of Systems Common Operating
 Environment

until uncertainty is resolved in at least
one components

Strategy A

Uncertainty in

1) Combat Identification
2) Battle Command and Mission Execution

3) Network Management System
4) Small Unmanned Ground Vehicle
5) Training of Common Components

Uncertainty in

1) Combat Identification
2) Battle Command and Mission Execution

3) Network Management System
4) Small Unmanned Ground Vehicle

5) Training of Common Components

Strategy B

Exit

Do Nothing

Exit

Do Nothing

Figure 52. Strategy tree depicting the types of options for scenario involving 5
Component Systems of the FCS facing Uncertainty.

 153

R. OPTION VALUATION

As the next step in our methodology, we examine strategy A to value the

“options” we created to hedge against risks using the Binomial Lattice approach. To

accomplish this, we used the Super Lattice Solver 3.0 provided by Real Options

Valuations Inc. The simulator uses a two step approach.

1. The first step involves the valuation of the underlying asset.

2. The second step involves the creation of the option valuation lattice using the

values computed in the lattice evolution of the underlying asset.

We selected the “Multiple Asset Supper Lattice Solver” choice in the tools menu

because our strategy approach is based on sequential compound options with multiple

phases (3 phases based on our strategy tree).

1. Real Options Assumptions

Since we already made an assumption that the FCS Network developments costs

$163.7 billion, and have also determined that the NPV of the FCS Network reduced from

a initial value of $6.4 trillion to $5.7 trillion due to a volatility of 0.0947%. We apply

these assumptions in our model based on a risk free rate of 3%.

a. Strategy A

Phase 1. Since we have uncertainty in 5 of the components, we proceed to

develop the remaining component and defer the other 5 components until uncertainty is

resolved in the 5 components.

Phase 2. We allocate the resources from the 5 components facing

uncertainty to component 1.

Phase 3. We reallocate the resources back to the 5 components once

uncertainty is resolved. We account for the administrative costs associated with

reallocating resources back to the development of the 5 components. Thus we recoup the

 154

overall benefits of the $6 billion set aside in phase 1 for administrative and resource

allocation logistics issues.

With this assumption in hand, we go ahead and set up our model as

depicted below in Figure 53 below subject to the following underlying assumptions:

Implementation Cost of FCS Network is $163.7 billion

Value of Underlying Asset is $6.4 trillion

The risk free rate is the 3.0

Volatility of our project cv = is 0.0947

Duration is 13 Years

Figure 53. Screen Shot of our Model in Super Lattice Solver 3.0.

We execute the model and obtain the lattice of our underlying asset as well as the

lattices associated with each of the three phases

 155

Figure 54. Lattice of Underlying Asset (FCS Network).

The value of the underlying asset was computed as $6.4 trillion (Figure 54).

Figure 55. Phase 1 Option Valuation Lattice.

The option analysis which represents the value of the option under strategy A

returned a value of $6.27 trillion (Figure 55). The lattices are created and values

computed through backward induction working backwards from phase 3 through phase 2

to phase 1. Given the option value of $6.27 trillion, the intrinsic value of the option

(option premium) is determined to be $6.27 trillion – $5.7 trillion = $570 billion .

 156

Figure 56. Phase 2 Option Valuation Lattice.

The phase 2 option analysis returned a value of $6.29 trillion (Figure 56).

Figure 57. Phase 3 Option Valuation Lattice.

The phase 3 option analysis returned a value of $6.39 trillion (Figure 57).

 157

Figure 58. Audit Sheet For Strategy A.

We also captured the “audit” trail of the values in our model which is depicted in

Figure 58 above. The Terminal equation depicted in our model is the computation that

occurs at maturity, while the intermediate equation is the computation that occurs at all

periods leading up to maturity and is computed using backward induction hence the

reduction in the valuation of the options from $6.39 trillion to $6.29 trillion and to $6.27

trillion across phases 3, 2 and 1 of the options valuation lattices respectively.

b. Strategy B

In strategy B, which calls for deferment, the assumption is made that the

duration for deferment option would be 3 years. (This means that the project is deferred

and not commenced until uncertainty is resolved within the 3 year period.) The model is

set up (Figure 59) using the same assumptions below.

Implementation Cost of FCS Network is $163.7 billion

Value of Underlying Asset is $6.4 trillion

 158

The risk free rate is the 3.0

Volatility of our project cv = is 0.0947

Duration is 3 Years (Maturity of deferment option)

Figure 59. Real Options Super Lattice Solver Deferment Model.

We also captured the “audit” trail associated with our model which is

depicted in Figure 60 below and also provide an explanation of the equations in the

analysis of our results.

Figure 60. Audit Trail of Option to Defer Model.

 159

Figure 61. FCS Network Underlying Asset Lattice of with Deferment Option.

The model is executed and similar to strategy A, the value of the underlying asset

was computed as $6.4 trillion (Figure 61). The option analysis on the other hand returned

a value of $6.25 trillion (Figure 62). Thus the intrinsic value of the deferment option

under strategy B is determined to be $6.25 trillion – $5.7 trillion = $550 billion.

Figure 62. Options Valuation Lattice under Deferment.

 160

S. ANALYSIS OF RESULTS

In comparing the results of both strategies A and B, we observe that while

strategy A has an option value of $570 billion, strategy B has an option value of $550

billion. What this implies, is that under both strategies A and B, the software executive

should be willing to pay no more, (and hopefully much less than) the option value of

$570 billion and $550 billion respectively in addition to the initial investment cost of

$163.7 billion to increase the chances of receiving the projected NPV of $6.27 trillion

under strategy A and $6.25 trillion under strategy B for the FCSN as opposed to the

current projected NPV of $5.7 trillion in light of the risks caused by the uncertainties in

five of the six software components.

In analyzing both strategies, strategy A is more attractive in the sense that instead

of waiting to invest until after 3 years (after which uncertainty would hopefully have been

resolved) and then proceeding to spend $163.7 billion at once, the staged phase approach

that adopts spending some little first and then investing more over time with a proof of

concept safer is worth more. Therefore under these conditions, strategy A which employs

the compound sequential options is the optimal approach.

T. KEY BENEFITS OF APPROACH

The key benefit of the approach that can be observed in the analysis of results is

the recognition of the added flexibility which the software program manager has, to make

decisions during the life of the FCS Network effort. The Real Options approach viewed

the FCS Network as a series of sequential compound options, with each option depending

on the exercise of those that preceded it.

This approach is very beneficial to the FCS program in that the current acquisition

strategy is based on a cost reimbursable strategy in which contractors are reimbursed for

their expenses regardless of the sometimes unreasonable justification of incurring the

costs. By adopting our approach, we posit that the manager or decision maker would be

able to actively manage the investment effort by exercising the applicable Call Options at

the appropriate time, a key benefit towards controlling cost overruns that the current cost

 161

reimbursable acquisition strategy facilitates. In comparison of our approach to traditional

Discounted Cash Flow techniques such as Net Present Value, we can see that the

investment costs of the FCS Network investment effort is lower under NPV ($163.7

million) than the Real Options approach ($163.7 million + Option Premium), because the

NPV approach assumes there is no uncertainty in the FCS Network and thus does not

account for risk in the decision making process.

Secondly, we have shown how the volatility of the FCS Network can be refined in

the event that the risk factors are either underestimated or overestimated by the Army by

using Dempster-Shafer Theory to refine the Army’s estimate. This is particularly

important because it serves as a cursory check of the Army’s assessment. By refining the

risk factors using our approach, the decision maker would be in a better position to

develop and price the associated Real Options with a higher degree of confidence.

 162

THIS PAGE INTENTIONALLY LEFT BLANK

 163

VII. SUMMARY

A. OVERVIEW

In the Department of Defense (DoD), the typical outcome of a software

acquisition program has been massive cost-escalation, slipping planned delivery dates

and making major cuts in the planned software functionality to guarantee program

success. To counter this dilemma, the DoD put forth a new weapons acquisition policy in

2003 based on an evolutionary acquisition approach to foster increased efficiency while

building flexibility in the acquisition process. However, the evolutionary acquisition

approach relies on the spiral development process, which assumes the end-state

requirements are known at the inception of the development process, which is a

misrepresentation of reality in the acquisition of DoD software-intensive weapons

systems. Hence the need for a framework as proposed in our study at a higher level of

abstraction (acquisition decision-making level) aimed at mitigating risks associated with

the technology objectives, constraints, and alternatives as put forth by the customer.

Our approach addresses these issues by taking a proactive/preemptive approach to

risk management by planning and paying for risks up front. This is not to say that risk

management strategies are not being adopted today, but rather a failure of management to

take a strategic approach towards risk management. The status quo today is to employ

reactive risk management strategies that often result in the reduction of much needed

functionality from the scope of the software investment effort. Therefore we proposed a

more proactive decision making-framework to guide management in the form of our Real

Options framework.

The Real Options approach is based on the concepts of financial options theory,

and in our study we have shown how it could be used as proactive risk management tool

that could be employed at the strategic decision-making level (executive level) pre-

acquisition, further complementing the spiral development approach at the “tactical

level”. The Real Options approach builds on several tried and proven approaches of

management. In this study we have shown using the U.S. Army Future Combat Systems

 164

program as an example that the traditional Real Options methodology, when enhanced

and properly formulated around a proposed or existing software-investment, could

provide a framework for guiding software acquisition decision-making by highlighting

the strategic importance of managerial flexibility. This flexibility offers management the

ability to balance the satisfaction of a customer’s requirements within the realms of the

associated cost and schedule constraints thus validating our hypothesis by developing the

appropriated options during the acquisition decision making phase and executing the

options when it becomes optimal to do so.

B. FINANCIAL MODEL AND ASSET VALUATION

To validate our hypothesis, we developed correlations and establish compliance

between the established Real Options pre-conditions and the software investment

decision-making process. While we were able to establish compliance with the Real

Options pre-conditions, this was not an easy task, mostly due to lack of detailed data --

when data was available, it was not available at the level of granularity which we would

have desired. Consequently, we had to make some assumptions regarding the data in

order to validate our hypothesis. However, we believe that our hypothesis would still

hold true when employed with real “data”.

The main Real Options pre-condition which we had to make assumptions about

was the precondition of the existence of a basic financial model. While we were able to

create a financial model based on our beliefs and intuitions, the lack of a comprehensive

methodology for valuing the returns of a potential DoD software investment proved

problematic in valuing the software asset. Further compounding the problem was a lack

of the clear delineation between software and hardware from both a cost and realized

benefits perspective.

C. UNCERTAINTY IDENTIFICATION AND RISK QUANTIFICATION

The second most import pre-condition of Real Options, is the existence of

uncertainties. Uncertainties must be present, otherwise the Real Options approach

becomes useless. We focus on this issue in our study because uncertainties have the

 165

consequence of introducing risks to the software investment effort, and the risk must be

properly quantified, because it is a key factor in determining the price of the options we

would need to create to hedge against the risk. Thus by properly quantifying risk, we are

increasing our degree of confidence in the volatility of our software investment effort and

consequently the price of the Option being developed. To satisfy this precondition, we

proposed the Uncertainty Elicitation Model based on our “2T” approach explicitly aimed

at capturing uncertainty. This model introduces an explicit, uncertainty elicitation phase

after the requirements elicitation phase and captures uncertainties along both managerial

and technical dimensions. Once these uncertainties are captured, we quantify the

uncertainties as risks by developing subjective probability estimates and modeling them

stochastically using a Monte Carlo simulation, in order to determine the overall volatility

of the returns of the software investment effort.

Next we proposed the use of the Dempster-Shaffer Theory of Evidence (DST) as

a volatility refinement technique to further refine our initial volatility estimates due to its

ability to address epistemic uncertainties and reflect ignorance in the risk probability

estimates. To satisfy the constraint of the independence of the sources of information

imposed by DST, we utilized the data provided by two independent sources, the Cost

Analysis Improvement Group (CAIG) and the Institute for Defense Analysis (IDA), to

improve our initial volatility estimates. We formulated the appropriate Real Options in

response to the risks using the revised volatility estimates obtained using the DST

methodology thereby satisfying precondition 4, which calls for the ability of management

to have the flexibility or option to make mid course corrections when actively managing

the project. The Real Options are presented in a strategy tree, to highlight all the possible

strategic pathways for that could be employed to address the risk at hand.

Given the uncertainties and risks we identified in the FCS program using our

uncertainty elicitation model, we proposed two “call” options based on a scenario which

assumed that of the six FCS component systems, one is not facing uncertainty while the

remaining five software components were facing uncertainty. The proposed “call”

options allowed the software executive to either “defer” the development of all the

components of the FCS Network to include the single system that is not facing

 166

uncertainty or employ a deferment and switching approach, by deferring development of

the system facing uncertainty until uncertainty is resolve and at the same time continuing

the development of the remaining five components.

D. OPTION PRICING

To price the Real Options created to hedge against risk, we modeled the options

reflected in our strategy tree in a simulator called the Super Lattice Solver 3.0 provided

by Real Options Valuation Inc.

We input all the necessary parameters to include the key parameters of volatility

and asset value which we had computed earlier on during our analysis and elected to use

the binomial lattice approach to value our option. It must be noted that while the Black

and Scholes method is probably the most popular options pricing approach, we choose

the binomial lattice approach because of its ability to account for American style options,

which is an advantage over the Black and Scholes approach. It is also important to

emphasize that while there are several types of options, labeled after geographic regions

(e.g., American, European and Bermudian options). The name of these options are just

labels for the options and do not imply geographical restrictions. An American style

option can be used in Europe, just as a European style option could be used in the United

States. The names associated with each of these options only have to do with when they

may be exercised by the option holder.

Associated with the task of pricing the options is also the timing of the execution

of the option, with the goal being to find the optimal revenue drivers, which is where we

further make the assumption, that under the laws of rational judgment, management

would time and execute the options when it is optimal to do so thereby satisfying

precondition 5, which addresses the issue of managerial judgment from a competence

perspective requiring that management must be smart enough to execute the Real Options

when it becomes optimal to do so.

 167

E. CONCLUSION

Uncertainties associated with software-related capital investments lead to

unnecessary and sometime preventable risks. Since DoD often sets optimistic

requirements for weapon programs that require new and unproven technologies, the

application of the Real Options methodology would be beneficial as it would enable DoD

to incorporate the appropriate “Options” into the acquisition contracts. Barring the use of

an explicit uncertainty elicitation phase as proposed in our research and the development

of “Options” to hedge against the risk as they appear, we believe the current acquisition

process would continue to be plagued by the risks of cost and schedule overrun. By

employing our proposed approach, DoD would be able to optimize the value of their

strategic investment decisions by evaluating several decision paths under certain

conditions to lead to the optimal investment strategy.

As it stands today, all the proposals put forth by the Congressional Budget Office

(CBO) call for the reduction of the overall scope of the FCS program, and while we

cannot affirm or disprove their recommendations due to the limited data we had at the

time of our study, we believe that the DoD can benefit from exploring our approach by

utilizing precise data with our framework to examine the credibility of the

recommendations put forth by CBO. Having validated our proposed framework (subject

to the assumptions we made), we believe that if the Real Options methodology had been

applied to the FCS program from the onset by acquiring the right to execute switching

options (within the constraints of our assumptions) to hedge against risks, the FCS

program would most likely not be facing the current calls for the reduction of the overall

scope of the FCS program due to cost escalation resulting from the inadequate upfront

risk management planning prior to the investment decision. Hence we believe our

framework could serve as basis for future work in terms of the expansion of its

capabilities to address risk and decision-making within the software engineering domain.

F. FUTURE WORK

 As part of the future work in connection with this research, we would like to

formalize and create an automated software acquisition decision-making tool explicitly

 168

aimed at managing the risks associated with software-related capital investments using

out Real Options approach. Specifically, we would like to gather historical information

on previously completed software acquisition programs depicting the number of

requirements planned at the onset of the acquisition effort and the number of

requirements delivered at the end of the software acquisition effort, as well as the

associated cost and schedule information for each of the acquisition programs. We would

use all of this data to establish a repository of historical programs which would serve as a

basis of comparison with current/future acquisition programs to help provide some

insight into the issue of requirements volatility and its associated impact on cost and

schedule overruns. By gathering historical information into a centralized repository, we

hope to alleviate the assumptions we made in our study due to the data gathering

problems we encountered in this study. We would incorporate the DST volatility

refinement technique into our software tool and link our automated software acquisition

decision making tool to the repository containing historical data of previously completed

software acquisition programs to provide a one “stop-shop” modeling toolkit to better

facilitate the acquisition decision making process.

 169

LIST OF REFERENCES

[1] Ian Sommerville, Software Engineering, Seventh Edition,. p. 6, 2004.

[2] Hadra Ziv, Debra Richardson, “The Uncertainty Principle In Software
 Engineering” Submitted To ICSE '97, 19th International Conference On
 Software Engineering, August 1996. Retrieved November 10, 2007 from
 http://Jeffsutherland.Org/Papers/Zivchaos.pdf.

[3] Rangaswami, Ken Berryman, “Unifying The Ecosystem”, Software 2006
 Industry Report, Sand Hill Group & McKinsey, Software 2006. Retrieved August
 26, 2007 from
 http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry_Repo
 rt.pdf.

[4] The Importance of Software in our Society
 http://en.perseidestech.net/index.php/le_reve/les_logiciels_libres/l_importance_de
 s_logiciels, Perséides Technologie, 2008. Last accessed May 11, 2008.

[5] Elizabeth Starrett, “Software Acquisition in the Army”, Crosstalk Journal of
 Defense Software Engineering, May 2007. Volume 20 No 5.

[6] Michael J. Mauboussin, “Get Real: Using Real Options In Security Analysis”,
 Credit Suisse First Boston Corporation, June 23,1999. Retrieved December 10,
 2007 from http://www.capatcolumbia.com/Articles/FoFinance/Fof10.pdf.

[7] Patience Wait, “Weapons Projects Misfire On Software”, Government Computer
 News, Vol. 25 No. 18, March 6, 2007.

[8] Boehm, Boehm. and K.J. Sullivan. “Software Engineering Economics: A
 Roadmap.” The Future of Software Engineering, ed. A. Finkelstein. 2000. ACM
 Press.

[9] Dixit, A.K. and Pindyck, R.S., “The options approach to capital investment”,
 Harvard Business Review, May-June 1995.

[10] Craig Fields, “Task Force On Defense Software”, Defense Science Board,
 November 2000. Retrieved January 15, 2008 from
 http://www.acq.osd.mil/dsb/reports/acqreformfoursub.pdf.

 [11] Craig Myers, Patricia Oberndorf, “Managing Software Acquisition: Open
 Systems and COTS product”. Software Engineering Institute Series, 2001.

http://jeffsutherland.org/Papers/Zivchaos.pdf�
http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry_Report.pdf�
http://www.sandhill.com/conferences/sw2006_materials/SW2006_Industry_Report.pdf�
http://en.perseidestech.net/index.php/le_reve/les_logiciels_libres/l_importance_de�
http://www.capatcolumbia.com/Articles/FoFinance/Fof10.pdf�
http://www.acq.osd.mil/dsb/reports/acqreformfoursub.pdf�

 170

[12] Richard K. Sylvester and Joseph A. Ferrara, “Conflict And Ambiguity
 Implementing Evolutionary Acquisition”, Acquisition quarterly review, Winter
 2003. Retrieved February 1, 2007 from
 http://www.dau.mil/pubs/arq/2003arq/Sylvesterwt3.pdf.

[13] Victor Fey, Norman Bodine, Eugene Rivin, “ Strategy for Effective
 Investment” White Paper, TRIZ GROUP, 2000. Retrieved February 1, 2007 from
 http://www.trizgroup.com/articles/StrategyforEffectiveTechInvestment.pdf.

[14] Jonathan Mun, “Real Options Analysis” Second Edition, Wiley, 2006.

[15] Wikipedia, “Net Present Value” Last Accessed June 30, 2008.
 http://en.wikipedia.org/wiki/Net_Present_Value.

[16] Tools for Decision Analysis: Analysis of Risky Decisions, Last Accessed June 30,
 2008 from http://home.ubalt.edu/ntsbarsh/opre640a/partIX.htm#reodam.

[17] Net Present Value, Last Accessed June 30, 2008.
 http://www.algebra.com/algebra/homework/Finance/Net_PresentValue.wikipedia.

[18] Utility, Principia Cybernetica Web, Web Dictionary of Cybernetics and
 Systems, Last Accessed June 30, 2008.
 http://pespmc1.vub.ac.be/ASC/UTILITY.html.

 [19] James Alleman “Real Options: Overview”, University of Colorado & PHB Hagler
 Bailly, Inc, 1999. Retrieved February 1, 2007 from
 http://www.colorado.edu/engineering/alleman/print_files/real-options-slides.pdf.

[20] Eduardo S. Schwartz1 and Carlos Zozaya-Gorostiza2“Valuation of Information
 Technology Investments as Real Options”, University of California, Los
 Angeles Anderson Graduate School of Management, 2Instituto Tecnológico
 Autónomo de México, Feb 2000. Retrieved February 1, 2007 from
 http://www.realoptions.org/papers2000/ZozayaSchwartz.pdf.

[21] Sven Ove Hansson “Decision Theory, A brief Introduction” Department of
 Philosophy and the History of Technology, Royal Institute of Technology (KTH),
 Stockholm, August 1994. Retrieved February 1, 2007 from
 http://www.infra.kth.se/~soh/decisiontheory.pdf.

[22] Bell DE, Raiffa H. Tversky A, “Decision Making: Descriptive, normative, and

 prescriptive interactions”. Cambridge, UK: Cambridge University Press; 1988.
 562-568.

[23] Dempster Shaffer Theory, Last Accessed August 20, 2008
 http://en.wikipedia.org/wiki/Dempster-Shafer.

http://www.dau.mil/pubs/arq/2003arq/Sylvesterwt3.pdf�
http://www.trizgroup.com/articles/StrategyforEffectiveTechInvestment.pdf�
http://en.wikipedia.org/wiki/Net_Present_Value�
http://home.ubalt.edu/ntsbarsh/opre640a/partIX.htm#reodam�
http://www.algebra.com/algebra/homework/Finance/Net_PresentValue.wikipedi�
http://pespmc1.vub.ac.be/ASC/UTILITY.html�
http://www.colorado.edu/engineering/alleman/print_files/real-options-slides.pdf�
http://www.realoptions.org/papers2000/ZozayaSchwartz.pdf�
http://www.infra.kth.se/~soh/decisiontheory.pdf�
http://en.wikipedia.org/wiki/Dempster-Shafer�

 171

[24] Rami Bahsoon, “Evaluating Architectural Stability with Real Options Theory”,
 PhD Dissertation, Faculty of Engineering Sciences, University of London, U.K.,
 October 2005. Retrieved December 12, 2006 from
 http://www-users.aston.ac.uk/~bahsoonr/BahsoonThesisFinal2005.pdf.

[25] KS96 Kevin J. Sullivan. “Software Design: The Options Approach”, ACM 1996.

[26] JM06 Johnathan Mun, “Real Options Analysis Versus Traditional DCF Valuation
 in Layman’s Terms”Real Options Valuation, Copyright 2006.

[27] Hakan Erdogmus, “Valuation of Complex Options in Software Development,”
 ICSE’99 Workshop on Economics Driven Software Engineering Research
 (EDSER1), Los Angeles, CA, May 17, 1999.

[28] Mousumi Bhattacharya, Patrick M. Wright, “Managing Human Assets in an
 Uncertain World: Applying Real Options Theory to HRM”, Working Paper 04 –
 03, Cornell Center For Advanced Human Resource Studies March 2004.

 [29] R.V. Field, Jr.†, A. Urbina S.F. Wojtkiewicz†, M. S. Eldred and J.R. Red-Horse,
 “Uncertainty Quantification In Large Computational Engineering Models”,
 American Institute of Aeronautics and Astronautics”, 2001.

[30] Alex Dekhtyar, Jane Hayes, Judy Goldsmith, “Uncertainty as a source for
 knowledge transfer”, position paper, First International Workshop on Living with
 Uncertainty in Software Engineering (IWLU'2007), Atlanta, GA, November
 2007.

[31] Svetlana V., Poroseva, Julie Letschert** and M. Yousuff Hussaini , “Application
 Of Evidence Theory To Quantify Uncertainty In Forecast Of Hurricane Path”,
 American Meteorological Society 86th Annual Meeting 29 January-2 February
 2006 (Atlanta, GA).

[32] Uncertainty Quantification, Last Accessed June 23, 2008.
 http://en.wikipedia.org/wiki/Uncertainty_quantification.

[33] Phillip A. Laplante, Colin J. Neill, "Uncertainty: A Meta-Property of Software,"
 sew,pp.228-233, 29th Annual IEEE/NASA Software Engineering Workshop,
 2005.

[34] Daniel P. Johnson “Multiplying Uncertainty, Uncertainties in Cost Estimation”,
 From a series of occasional essays on topics in research and development. 2005.

[35] Neal Sample, Pedram Keyani, Gio Wiederhold, “Scheduling Under Uncertainty:
 Planning for the Ubiquitous Grid”, Fifth International Conference on
 Coordination Models and Languages, 2002.

http://www-users.aston.ac.uk/~bahsoonr/BahsoonThesisFinal2005.pdf�
http://en.wikipedia.org/wiki/Uncertainty_quantification�

 172

[36] Chapter 15: Software Design Condensed GSAM Handbook, 2003. Retrieved
 September 23, 2007.
 http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap15.pdf.

[37] Cone of Uncertainty, Last Accessed April 20, 2008.
 http://www.construx.com/Page.aspx?hid=1648, 2008.

[38] Futrell R.T., Shafer D.F., Shafer L.I.: “Scheduling uncertainties (Quality Software
 Project Management”, Prentice Hall PTR, Upper Saddle River, NJ, 2002.

[39] David Anderson, “Agile Management for Software Engineering: Applying the
 Theory of Constraints for Business Results (Coad Series)”, Prentice Hall 2004.

[40] Brian P. Gallagher, ”Software Acquisition Risk Management Key Process Area
 (KPA)—A Guidebook,” CMU/SEI-99-HB-001, Version 1.02 October 1999.

[41] Daniel Berry ,”Academic Legitimacy of the Software Engineering Profession”
 SEI/CMU Technical Report 92-TR-034;1992, p. 38.

[42] Pivotal Insights, Last Accessed January 13, 2008.
 http://www.pivotal-insight.com/insight/august2005/program_management.php.

[43] Mathiassen, T. Seewaldt, and J. Stage. In: J. Stage et. al. (Eds.). “Prototyping and
 Specifying-Principles and Practices of a Mixed Approach”. Quality Software-
 Concepts and Tools. Aalborg University, 1994.

[44] Mathiassen and J. Stage. “The Principle of Limited Reduction in Software
 Design”. Information, Technology and People, Vol. 6, No. 2, 1992.

[45] Elaine Hall, “Managing Risks: Methods for software systems development”, SEI
 Seires in Software Engineering.

[46] Kathleen Hevert, “Real Options: Valuing Flexibility in Strategic Investments”
 Last Accessed March 3, 3007 from
 http://www.babsoninsight.com/contentmgr/showdetails.php/id/116
 Babson College 2008.

[47] Barry Boehm, Chris Abts, Sunita Chulani, “Software Development Cost
 Estimation Approaches – A Survey” University of Southern California Los
 Angeles, CA 90089-0781.

 [48] Lynn M Stuter,“Delphi Technique, What is it ?”, Retrieved March 3, 3007 from
 http://www.learn-usa.com/transformation_process/acf001.htm.

http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap15.pdf�
http://www.construx.com/Page.aspx?hid=1648�
http://www.pivotal-insight.com/insight/august2005/program_management.php�
http://www.babsoninsight.com/contentmgr/showdetails.php/id/116�
http://www.learn-usa.com/transformation_process/acf001.htm�

 173

[49] Stefan Arnborg, Kungliga Tekniska Hogskolan “Robust Bayesianism: Relation
 to Evidence Theory”, Journal of Advances in Information Fusion Vol. 1, No. 1
 July 2006.

[50] Kari Sentz, “Combination of Evidence in Dempster-Shafer Theory”, PhD
 Dissertation, Systems Science and Industrial Engineering Department
 Thomas J. Watson School of Engineering and Applied Science Binghamton
 University, 2002.

[51] Glenn Shafer, ” The Art Of Causal Conjecture, Belief Functions Introduction”
 Chapter 7, 1996.

[52] Hakan Erdogmus and Jennifer Vandergraaf, “Quantitative Approaches for
 Assessing the Value of COTS-centric Development” Institute for Information
 Technology, Software Engineering Group National Research Council of Canada,
 28 October 2004.

[53] James R. White, “IRS Guidance on Economic Analyses in Investment Business
 Cases Guidance on Economic Analyses”, United States General Accounting
 Office.

[54] Aswath Damodaran, “Tools and Techniques for Determining the Value of an
 Asset, ” Second Edition, Chapter 29.

[55] Options, Last Accessed April 20, 2008.
 http://www.investorsobserver.com/Docs/SP/whatis.pdf.

[56] Binomial Pricing Options, Last Accessed April 20, 2008.
 http://en.wikipedia.org/wiki/Binomial_options_pricing_model.

[57] Congressional Budget Office, CBO TESTIMONY before the Subcommittee on
 Tactical Air and Land Forces Committee on Armed Services U.S. House of
 Representatives, Statement of J. Michael Gilmore, Assistant Director The
 Army’s Future Combat Systems Program, April 4, 2006.

[58] Government Accounting Office, “2009 Is a Critical Juncture for the Army’s
 Future Combat System” GAO Report 08-408.

[59] Government Accounting Office, “Defense Acquisitions, Report to Congressional
 committees: Significant Challenges Ahead in Developing and Demonstrating
 Future Combat System’s Network and Software”, GAO Report 08-409, March
 2008.

http://www.investorsobserver.com/Docs/SP/whatis.pdf�
http://en.wikipedia.org/wiki/Binomial_options_pricing_model�

 174

[60] Congressional Budget Office based on data from the Department of the Army and
 U.S. Army, Project Manager, Combat Systems, “Combat Systems: Where We
 Are, Where We Are Going”, Briefing at the National Defense Industrial
 Association Combat Vehicles Conference, September 22, 2005).

[61] Andrew Feickert ,Congressional Reporting Service report to Congress The
 Army’s Future Combat System (FCS): Background and Issues for Congress
 Updated October 11, 2007.

[62] Government Accounting Office, “Defense Acquisitions, Assessments Selected
 Weapon Programs”, Report to congressional committees. GAO Report 08-467sp.
 March 2008.

[63] Government Accounting Office, “Defense Acquisitions, Testimony Before the
 Subcommittee on Tactical Air and Land Forces, Committee on Armed Services,
 House of Representatives, The Army’s Future Combat Systems’ Features, Risks,
 and Alternatives” Statement of Paul L. Francis, Director, Acquisition and
 Sourcing Management, April 2004. GAO Report 04-635T.

[64] Government Accounting Office, “Defense Acquisitions, Report to Congressional
 Committees, Key Decisions to Be Made on Future Combat System”, GAO Report
 07-376.

[65] Pamela Hess, “Army Must Afford FCS”, Pentagon Correspondent Washington,
 (UPI) Aug 15, 2006, Last Accessed January 24, 2008.
 http://www.spacewar.com/reports/Army_Must_Afford_FCS_999.html.

[66] A Congressional Budget Office Study, “The Army’s Future Combat Systems
 Program and Alternatives, August 2006.

 [67] G.P. Kulk, C. Verhoef, “Quantifying requirements volatility effects”, Science of
 Computer Programming 2008.

[68] Evgenia Vogiatzi, “Problems in Regression Analysis and their Corrections”,
 Retrieved October 5, 2008 from
 http://www.geocities.com/qecon2002/founda10.html, 2002.

[69] Least Square Methods, Last Accessed October 2, 2008.
 http://en.wikipedia.org/wiki/Least_squares.

[70] Durbin-Watson Statistic, Last Accessed October 2, 2008.
 http://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic.

[71] Dempster Shafer Theory, Last Accessed October 2, 2008.
 http://individual.utoronto.ca/weisberg/phl2110/Readings/Dempster_Shafer.pdf.

http://www.spacewar.com/reports/Army_Must_Afford_FCS_999.html�
http://www.geocities.com/qecon2002/founda10.html�
http://en.wikipedia.org/wiki/Least_squares�
http://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic�
http://individual.utoronto.ca/weisberg/phl2110/Readings/Dempster_Shafer.pdf�

 175

[72] The boxer, the wrestler, and the coin flip: A paradox of robust Bayesian inference
 and belief functions, Andrew Gelman, Last Accessed October 2, 2008.
 http://www.stat.columbia.edu/~gelman/research/published/augie4.pdf

http://www.stat.columbia.edu/~gelman/research/published/augie4.pdf�

 176

THIS PAGE INTENTIONALLY LEFT BLANK

 177

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Col William T. Cahoon
459th ARW/CC
U.S. Air Force Reserve
Andrews AFB, MD 20762

4. Dr. Peter Denning
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

5. Dr. Man-Tak Shing
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

6. Dr. Johnathan Mun
 Department of Information Sciences
 Naval Postgraduate School
 Monterey, California

7. Dr. Mikhail Auguston

Department of Computer Science
Naval Postgraduate School
Monterey, California

8. Dr. J. Bret Michael
Department of Computer Science
Naval Postgraduate School
Monterey, California

9. Dr. Tarek Abdel-Hamid
Department of Information Sciences
Naval Postgraduate School
Monterey, California

 178

10. RADM James B. Greene, USN (Ret)
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, California

11. Dr. Keith Snider
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, California

12. Ms. Karey Shaffer
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, California

13. Dr. Richard Riehle
Department of Computer Science
Naval Postgraduate School
Monterey, California

14. Dr. Bert Lundy
Department of Computer Science
Naval Postgraduate School
Monterey, California

15. Dr. Daniel A. Nussbaum
Department of Operations Research
Naval Postgraduate School
Monterey, California

16. Dr. Thomas Housel
Department of Information Sciences
Naval Postgraduate School
Monterey, California

17. Dr. John Osmundson
Department of Information Sciences
Naval Postgraduate School
Monterey, California

18. Dr. Carl Jones
Department of Information Sciences
Naval Postgraduate School
Monterey, California

 179

19. Dean S. S. Sritharan
Graduate School of Engineering & Applied Sciences
Naval Postgraduate School
Monterey , California

20. LTC Thomas S. Cook

Department of Electrical Engineering and Computer Science
United States Military Academy
West Point, New York

21. Capt. Albert Olagbemiro
22 Laurence Brooke Road
Catonsville, Maryland

	I. INTRODUCTION
	A. MOTIVATION
	B. STATEMENT OF THE PROBLEM
	C. RESEARCH OBJECTIVES
	D. HYPOTHESIS
	E. RESEARCH METHODOLOGY
	F. SIGNIFICANCE AND POTENTIAL IMPACT
	G. SUMMARY OF MAJOR CONTRIBUTIONS
	H. LIMITATIONS
	I. ASSUMPTIONS
	J. DISSERTATION ORGANIZATION

	II. ASSESSMENT OF PREVIOUS WORK
	A. SOFTWARE INVESTMENTS BACKGROUND
	B. INVESTMENT STRATEGIES
	C. WEAKNESSES AND GAPS IN STATE OF THE KNOWLEDGE
	1. Evolutionary Perspective
	2. Technical Perspective
	3. Managerial Perspective
	a. Decision Tree Analysis
	b. Utility Theory

	D. INVESTMENT VALUATION METHODS
	1. Discounted Cash Flow (DCF) Model

	E. REAL OPTIONS METHODOLOGY

	III. ADDRESSING UNCERTAINTY
	A. INTRODUCTION
	B. CATEGORIZATION OF UNCERTAINTIES
	C. INVESTMENT DECISION MAKING UNCERTAINTIES
	D. UNCERTAINTY ELICITATION
	E. SOFTWARE ENGINEERING UNCERTAINTIES
	F. MANAGERIAL PERSPECTIVE
	1. Cost Estimation
	2. Scheduling

	G. TECHNICAL PERSPECTIVE
	1. Software Specification
	2. Software Design and Implementation
	3. Software Validation
	4. Software Evolution

	H. TYPES OF SOFTWARE ENGINEERING UNCERTAINTIES
	I. MANAGING SOFTWARE ENGINEERING UNCERTAINTIES

	IV. ESTIMATING VOLATILITY
	A. INTRODUCTION
	B. RISK OVERVIEW
	1. Software Investments Risks Estimation
	2. Requirements Risk Estimation
	3. Schedule Risk Elicitation
	4. Cost Estimation Risk Elicitation

	C. EVIDENCE GATHERING
	1. Data Fitting Techniques

	D. VOLATILITY ESTIMATION: MONTE CARLO SIMULATION
	E. VOLATILITY REFINEMENT USING DEMPSTER SHAFER’S THEORY
	1. Mechanics of Dempster-Shafer Theory

	F. DEMPSTER’S RULES FOR COMBINATION OF EVIDENCE
	1. Mechanics of Dempster Rule of Combination

	G. VOLATILITY COMPUTATION: EXAMPLE
	H. INTERPRETING THE FORECAST RESULTS
	I. APPLICATION OF DEMPSTER-SHAFER THEORY
	J. ANALYSIS

	V. REAL OPTIONS FRAMEWORK FOR SOFTWARE INVESTMENTS
	A. INTRODUCTION
	B. BASE CASE VALUATION OF THE UNDERLYING ASSET
	C. REFINING ASSET VALUE USING MONTE CARLO SIMULATION
	D. REAL OPTIONS
	1. Buying Call and Put Options
	2. Selling Call and Put Options

	E. IDENTIFYING STRATEGIC REAL OPTIONS
	F. PARTITIONING: DECOMPOSING THE SOFTWARE SOLUTION
	G. ANALYSIS OF STRATEGIC OPTIONS
	H. MECHANICS OF OPTIONS VALUATION: OPTIONS PREMIUM
	I. VALUATION COMPUTATIONAL METHODS
	J. REAL OPTIONS ANALYSIS USING MONTE CARLO SIMULATION
	K. REALIZED REAL OPTIONS FRAMEWORK

	VI. VALIDATING THE REAL OPTIONS FRAMEWORK
	A. KEY CONTRIBUTIONS
	B. FUTURE COMBAT SYSTEM (FCS) OVERVIEW
	C. SOFTWARE COMPONENT: FCS NETWORK
	D. BENEFITS OF FCS
	E. ASSUMPTIONS
	F. TECHNICAL CHALLENGES
	G. MANAGEMENT CHALLENGES
	H. MANAGERIAL UNCERTAINTIES
	1. Estimation Uncertainty
	2. Scheduling Uncertainty

	I. TECHNICAL UNCERTAINTIES
	1. Requirements Uncertainty
	2. Integration Uncertainty
	3. Performance Uncertainty

	J. BASIS FOR SELECTING THE JOINT STRIKE FIGHTER PROGRAM
	1. JSF Technology Maturation Risks
	2. JSF Program Management (Cost Risks)
	3. JSF Software Size (SLOC)

	K. RISKS IMPACT ON FCS NETWORK
	L. VALUATION OF THE FUTURE COMBAT SYSTEMS NETWORK
	1. Assumption 1
	2. Justification
	3. Assumption 2
	4. Rationale for Assumption

	M. VOLATILITY DETERMINATION
	N. BACKGROUND OF THE EXPERTS
	O. REFINING VOLATILITY USING DEMPSTER SHAFER’S THEORY
	P. IDENTIFYING OPTIONS
	1. Scenario
	a. Compound Option
	b. Deferment Option

	Q. STRATEGY TREE OF COMPOUND AND DEFERMENT OPTIONS
	R. OPTION VALUATION
	1. Real Options Assumptions
	a. Strategy A
	b. Strategy B

	S. ANALYSIS OF RESULTS
	T. KEY BENEFITS OF APPROACH

	VII. SUMMARY
	A. OVERVIEW
	B. FINANCIAL MODEL AND ASSET VALUATION
	D. OPTION PRICING
	E. CONCLUSION
	F. FUTURE WORK

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

